共查询到20条相似文献,搜索用时 15 毫秒
1.
本文利用轴对称图形性质“每条对称轴的左右两边的图形都全同”,先解决以下问题:如图1中,OE是等边三角形OAB的对称轴,OF是等边三角形OCD的对称轴,且OA=4(cm),OC=3(cm),那么AD的图1长是5(c m).简证因OE是△OAB的对称轴,所以OE是∠AOB的角平分线,又OF是△OCD的对称轴,所以OF是∠COD的角平分线,于是∠AOC=∠COB=∠BOD=30°,由此得∠AOD=∠AOC+∠COB+∠BOD=30°+30°+30°=90°,所以△OAD是直角三角形,于是AD2=OA2+OD2=OA2+OC2=42+32=52,因此AD=5(cm).现在我们顺着这个思路再逆想如下一问题:题目如图2,∠EOF=30°… 相似文献
2.
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴.由此可知,成轴对称的两个图形全等.本文以近几年的中考试题为例,介绍几种借助轴对称来构造全等三角形解题的方法,供同学们学习时参考。 相似文献
3.
李传东 《数学学习与研究(教研版)》2009,(9):60-60
图形的轴对称是初中阶段图形中一个普遍存在的性质,本文从几种特殊图形入手,利用轴对称推导其性质和结论,并举例阐述其应用,对具有轴对称的图形学习和应用作了一定的尝试和探讨. 相似文献
4.
轴对称图形沿某直线折叠后直线两旁的部分是一定可以互相重合的,实际区分轴对称图形时,关键要抓住两点:一是沿某直线折叠,二是两部分能否互相重合,能重合的是轴对称图形,否则不是轴对称图形.常见的轴对称图形有:线段、等腰三角形、等边三角形、等腰梯形、矩形、菱形、正方形、圆等.[第一段] 相似文献
5.
6.
根据图形的某些特征,运用轴对称思想去添加辅助线,把已知图形的部分或全部补为对称图形,再利用轴对称性质,常能较容易地从图形各元素的对应关系发现其内在联系,找到解题的思路.请看下面三道中考题. 相似文献
7.
把一个图形沿某条直绂折叠.如果它能与另一个图形完全重合.那么称这两个图形关于这条直绂成轴对称.根据轴对称的概念可得性质:(1)成轴对称的两个图形全等:(2)如果两个图形成轴对称.那么对称轴为对称点的连绂的垂直平分绂.下面就这些性质在解题中的应用作如下分析.供大家参考. 相似文献
8.
(1)角是轴对称图形,角平分线所在的直线是它的对称轴.(2)角的平分线上的点到这个角的两边的距离相等.(3)到角的两边的距离相等的点,在这个角的平分线所在的直线上.(4)线段是轴对称图形,它的对称轴是这条线段的垂直平分线.(5)线段的垂直平分线上的点到这条线段两个端点的距离相等.(6)到线段两个端点的距离相等的点,在这条线段的垂直平分线上. 相似文献
9.
10.
张良江 《数理化学习(初中版)》2011,(5):65
图形的变换能够展现几何图形的外在美与几何图形的内在性质,近年来一直是各地中考和相关竞赛题的热点.在解题过程中,如能恰到好处地运用上述三种图形变换,将能起到"化繁为简"、"化难为易"、"出奇制胜"的效果.现举例如下:一、巧用轴对称例1如图1,∠AOB=30°,点P为∠AOB内一点,且OP=8cm,试在边OA、OB边O上分别找出M、N,使△PMN的周长最小,并 相似文献
11.
二次函数y=ax2+bx+c(a≠0)的图像是抛物线,是轴对称图形,对称轴为x0=b/2a,即若抛物线Y=ax2+bx+c(a≠0)上有两点(x1,y)、(x2,y),则有x1+x2/2=x0成立,利用这一简单性质,可以迅速解决一类中考题. 相似文献
12.
轴对称图形与我们日常生活的关系十分密切,各种各样的轴对称图形丰富着我们的生活。通过轴对称图形的教学.可以让学生感受美、探索美、欣赏美、创造美。但是,笔者发现有的老师对轴对称图形及其对称轴缺乏正确的认识,在教学中存在着一些困惑、误解。本着互相探讨的精神,特提出个人的看法与大家交流,不妥之处,欢迎批评指教。 相似文献
13.
我们如果能够深入到事物和现象的本质里,去体验"发现现象之间的出乎意料的相互联系的那种惊奇的情感"(苏霍姆林斯基语).则这种惊奇的情感可以强化提出疑问的意识与对疑问的研究.现将作者在对初中数学教材研读中,发现的轴对称图形的对称轴分布规律及其一些应用,整理成章句,以体验这种惊奇的情感. 相似文献
14.
一、知识剖析1.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,这条直线就是对称轴.折叠后重合的点叫做对称点.3.线段的垂直平分线:经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,又称线段的中垂线.4.轴对称图形与轴对称的区别与联系:(1)区别:轴对称图形研究的是一个具有特殊形状的图形,轴对称研究的是两个全等图形的位置关系;轴对称图形只涉及一个图形,轴对称涉及到两个图形. 相似文献
15.
16.
17.
18.
19.
等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线重合(简称三线合一).我们常通过三角形全等构造等腰三角形,从而运用三线合一的性质证明角相等、两条线段相等、两条直线垂直.[第一段] 相似文献
20.
圆锥曲线的轴对称图形方程的求法 总被引:2,自引:1,他引:1
大家都知道,要求圆锥曲线E以直线l为对称轴的对称图象的方程E′,其主要步骤有三:首先,设M(x1,y1)是圆锥曲线E上的任意一点,或是圆锥曲线的特定点(如圆心). 相似文献