首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
反函数是高一数学的重点知识,也是高考常考内容之一.综观高考试题,主要从五个方面考查:给出函数y=f(x)的解析式,求出它的反函数y=f-1(x);利用“函数y=f(x)与反函数y=f-1(x)的图象关于直线y=x对称”解决有关问题;求反函数的定义域或反函数的某一值.下面结合具体例子加以说明.  相似文献   

2.
沈孟校 《教学月刊》2006,(10):25-26
求原函数图像与其反函数图像公共点的坐标常规方法是:先求出函数y=f(x)的反函数y=f-(1x),再解由y=(f x)和y=f-(1x)组成的方程组得到公共点的坐标.这种解法思路顺畅,其思想方法亦比较简单,但有时运算较复杂.本文介绍解决这类问题的非常规方法,即使不求出函数y=(f x)的反函数y=f-  相似文献   

3.
高中课本及其配套教学参考书在小结求反函数的步骤时这样指出:①先将y=f(x)看成方程,解出x=f~(-1)(y);②互换x=f~(-1)(y)中的x,y,即得反函数y=f~(-1)(x)。课本中的例题解答也全都按这两步进行。其实,所求得的“反函数”不一定是原函数的反函数,因为所求得的“反函数”的定义域未必是原函数的值域。因此,在求反函数时,必须先确定原函数的值域,即确定反函数的定义域,然后再按上述步骤求出反函数。所以求反函数应包含如下三个步骤:(1)求出函数y=  相似文献   

4.
有些同学一遇到有关反函数问题,立即想到先求出函数y=f(z)的反函数y=f^-1(x),再解决相关问题.其实很多的反函数问题是不必求出其反函数的解析式.  相似文献   

5.
互为反函数的两个函数的本质特征是:x与y交换,即函数y=f(x)与x=f(y)互为反函数,且x=f(y)与y=f-1(x)为同一函数,利用这个本质特征可以免求反函数,并解决以下一系列相关问题.1·互为反函数解析式间的关系问题【例1】设第一个函数y=f(x)的反函数是第二个函数,而第三个函数的图像与  相似文献   

6.
由反函数定义与性质可得两个正确命题: 1.函数y=f(x)的定义域、值域分别是它的反函数y=f-1(x)的值域、定义域. 2.函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对称. 但对如下问题同学们总是有疑问:  相似文献   

7.
有些同学一遇到有关反函数的问题,就立即想到先求出函数y=f(x)的反函数y=f^-11(z),再解决相关问题.其实,很多反函数问题都不必先求出其反函数的表达式,我们甚至可以用一些方法来避开求反函数的表达式,以达到快速解题的目的.  相似文献   

8.
反函数是中学数学教材中的难点之一,在教学中我们常会遇到对反函数定义理解不深不透、解题思路不清、解答步骤不全等错误,严重影响学生对这部分知识的掌握.下面本人将以函数中常见的几种典型错误进行剖析,与同行磋商.误区一:忽视函数存在反函数的条件案例1函数y=x2(x∈R)是否存在反函数,若存在,求反函数;若不存在,说明理由.错解函数存在反函数.当x≥0时,由y=x2得x=y,所以x≥0时,反函数为y=x(x≥0);当x<0时,由y=x2得x=-y,所以x<0时,反函数为y=-x(x>0).剖析忽视函数存在反函数的条件,从而盲目地进行分类讨论求反函数.正解∵y=x2(x∈R)不是一一对应函数,∴y=x2不存在反函数.解后反思只有从定义域到值域上的一一映射所确定的函数才有反函数.误区二:错解反函数的解析式案例2求函数y=3x2-1(x≤0)的反函数的表达式.错解由y=3x2-1,得x2=(y+1)3,∴x=(y+1)3或x=-(y+1)3,∴反函数的表达式为y=(x+1)3或y=-(x+1)3.剖析在求解过程中没有考虑原函数中x≤0这个条件导致出现两个答案的错误.正解由y=3x2-1,得x2=(y+1)3,∵x≤0,∴x...  相似文献   

9.
误解1:函数y=f(x)和它的反函数y=f-1(x)的图象的交点在直线y=x上. 教材上例题涉及的函数及我们接触的函数的图象与其反函数的图象的交点大多 直线y=x上,所以不少同学就认为函数若与其反函数不是同一函数,且函数与其反函 的图象有交点,则交点必在直线y=x上,但这种观点是错误的.现举两例,希望同学们 明确这个问题._ 如函数y=7-3x,其图象过(2,1)点,其反函数y= 7-x2 3(x≥0)的图象也过(2,1)点,故函数y=7-3x与其 反函数图象的一个交点为(2,1)点.又由函数与其反函数的 图象关于直线y=x对称,故点(2,1)关于直线y=x的对称 点(1,2)也是函数y=7-3…  相似文献   

10.
在反函数的教学中,一个有趣的问题是:函数y=f(x)与其反函数y=f-1(x)的图象如果有交点,交点是否都在直线y=x上?有不少人认为答案是肯定的.但是显然,函数f(x)=1/x(x∈R)与其反函数的图象的交点并不都在直线y=x上.又如f(x)=  相似文献   

11.
<正>近年来,出现了有关根据原函数的解析式求反函数的数值,或判断反函数的图象等问题.在解决试题中的这类问题时,若先根据原函数的解析式求出反函数的解析式,解题过程往往相当麻烦而且容易出错.其实,只要理解了反函数的定义,弄清了原函数与反函数的之间的联系,不必求反函数的解析式,就能轻而易举地解决这些问题.根据反函数的定义可知,原函数与反函数之间具有下面的几个性质(证明略):性质1函数y=f(x)与反函数y=  相似文献   

12.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

13.
一、教学过程1.复习。反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。求出函数y=x3的反函数。2.新课。先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):  相似文献   

14.
笔者在文[1]中例举“在一次评比课中,同几位选手课后交换意见时,就他们执教的‘反函数’这节课,问:为什么能把y=f(x)的反函数表示成y=f-1(x)的形式?为什么要把y=f(x)的反函数表示成y=f-1(x)的形式呢?”引起同行的关注.最近,相继收到读者来信,问及这一问题.反函数是中学教材中的一个难点,又是学生必须掌握的一个重点内容.但教材和教参对此却少有深究,因此,有必要对该问题再行探讨.我们认为:在教学中,必须解决好下面两大问题.1讲清反函数概念中的两个关键点1.1如何刻划反函数存在的条件为便于说明,现抄录教材中反函数定义于下:函数y=f(x)(x∈…  相似文献   

15.
对这个问题需要作进一步的分析,才可回答.例如函数y=-x+b和y=a+x1-a,它们的反函数是其本身,它们图象上的任一点,都是它和它的反函数的图象的交点,在y=x以外还有无数个公共点.如果一个函数的反函数不是它的本身时,且它与它的反函数图象又有交点,那么其交点只在y=x上吗?许多同学往往会作出错误判断,认为这时互为反函数图象的交点只会在y=x上.下面用一个实例来回答这个问题.例在P(1,1)、Q(1,2)、M(2,3)、N12,41四个点中,函数y=ax(a>0且a≠1)与它的反函数图象的交点是().A.NB.QC.MD.P解析:显然函数y=ax的反函数是y=logax(x>0).由对数函数的…  相似文献   

16.
顺着学生思维走尴尬一次也无妨--一道例题的教后反思   总被引:1,自引:0,他引:1  
例题 (2004年黑龙江模拟试题)已知函数f(x)=√x-1/√x. (1)证明:函数f(x)在定义域上有反函数,并求出反函数; (2)反函数的图像是否经过(0,1)?反函数的图像与直线y=x有无交点?  相似文献   

17.
"反函数"是中学数学中的难点内容之一,学生在学习和应用中极易出现错误.为了避免错误的出现,反函数学习中一些模糊的问题需要澄清.一、关于一个函数存在反函数的条件不是一切函数都有反函数,若函数y=f(x),对于值域中的任一个值y0,在定义域中都有唯一的值x0,使得f(x0)=y0成立,则y=f(x)才有反函数.即只有决定函数的映射是定义域到值域上的一一映射,这个函数才有反函数.(1)若y=f(x)在定义域D上是严格增函数,它有反函数吗?  相似文献   

18.
题型:若函数 y=f(x)存在反函数 y=f~(-1)(x),求 y=f(x-1)的反函数.解:因为 y=f(x)的反函数是 y=f~(-1)(x),在解析式中,用 x-1代换 x 得 y=f(x-1)的反函数是 y=f~(-1)(x-1).在解题时很多学生会用上述的解法求反函数,这种解法正确与否?探究①:函数 y=f(x)与 y=f(x-1)之间是什么关系?同样,函数 y=f~(-1)(x)与 y=f~(-1)(x-1)之间又是什么关系?  相似文献   

19.
本文从定理入手,探讨与反函数有关的图象平移问题,与大家共同学习. 1.定理若函数y=f(x)的反函数为y=g(x),则函数y=f(x c)(c∈R)与y=g(x)-C的图象关于直线y=z对称. 证明设P(a,b)是函数y=f(x c)上任意一点,则b=f(a c) ①而点P(a,b)关于直线y=x的对称点为Q(b,a).因为函数y=f(x)的反函数为y=g(x),由①,得 a c=g(b),a=g(b)-C,所以点Q(b,a)在函数y=g(x)-c的图象上.  相似文献   

20.
本文对抽象函数的反函数的求法给出通用方法.一、问题的提出问题Ⅰ:设函数f(x)的反函数是f~(-1)(x),且函数f(2x 3)的反函数存在,求f(2x 3)的反函数.问题Ⅱ:设函数f(x)的反函数是f~(-1)(x),且函数f~(-1)(2x 3)的反函数存在,求f~(-1)(2x 3)的反函数.问题Ⅲ:设函数f(x)的反函数是f~(-1)(x),问:1.哪个函数的反函数是f~(-1)(x-3)/22.哪个函数的反函数是2·f~(-1)(x) 3二:问题的通用解法三个问题实质都是求抽象函数的反函数,可设所求函数为y=g(x),只须求出g(x)即可.而求函数g(x)用到如下结论:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号