首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
在平面三角中有与代数中的平方差公式a~2-b~2=(a+b)(a-b)形似的恒等式: sin~2α-sin~2β=cos~2β-cos~2α=sin(α+β)·sin(α-β),(1)与 cos~2α-sin~2β=cos~2β-sin~2α=cos(α+β)·cos(α-β)。(2) 这两组恒等式不妨叫做三角中的“平方差”公式。熟记这两组恒等式对于解答某些三角问题、几何问题或综合题会有所帮助。恒等式(1)证明如下: ∵sin~2α-sin~2β=1/2(1-cos2α)-1/2(1-cos2β)=1/2(cos2β-cos2α)=sin(α+β)sin(α-β),  相似文献   

2.
题目已知sinαcosβ=-1/2,求cosαsinβ的取值范围.引申1已知sinαcosβ=α,cosαsinβ=b,则|a|+|b|≤1,当且仅当sin~2α+sin~2β=1时等号成立.证明|a|+|b| =|sinα||cosβ|+|cosα||sinβ|≤(sin~2α+cos~2β)/2+(cos~2α+sin~2β)/2=1,  相似文献   

3.
引入变量,将一些原本不是求解方程的问题转化为解方程,从而使原问题获解的方法,称为“方程法”。可应用在一些三角等式的证明中。 [例1] 已知cos~4α/cos~2β+sin~4α/sin~2β=1,求证:cos~8α/cos~6β+sin~8α/sin~6β=1。证:令cos~2α=x,sin~2α=y,则有,用代入消元方法可得到,x~2-2xcos~2β+cos~4β=0,即(x-cos~2β)~2=0, ∴x=cos~2β,y=sin~2β,即cos~2α=cos~2β,sin~2α=sin~2β。  相似文献   

4.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

5.
考察下列恒等式: cos2θ=2cos~2θ-1; cos2θ=-(2sin~2θ-1) cos3θ=4 cos~3θ-3cosθ; sin3θ=-(4sin~3θ-3sinθ) cos4θ=8 cos~4θ-8cos~2θ+1; cos4θ=8sin~4θ-8sin~2θ+1 cos5θ=16cos~5θ-20cos~3θ+5cosθ;sin5θ=16sin~5θ-20sin~3θ+5sinθ, ………………………………我们或许会猜测;是否存在某个定理,可以揭示上列展开式之间的微妙关系呢? 回答是肯定的。本文将提出并证明这个定理。定理若已知casnθ=F(cosθ))  相似文献   

6.
三角中的降幂公式:sin~2α=(1-cos2α)/2,cos~2α=(1 cos2α)/2由倍角公式变形而得,其应用十分广泛.例1.化简cos~2(120° A) cos~2(240° A) cos~2A.解:原式=(1/2)[1 cos(240° 2A)] (1/2)[1 cos(480° 2A)] (1/2)[1 cos2A]=3/2例2.求sin~4 22.5° sin~4 67.5° sin~4 112.5° sin~4 157.5°的值.解:原式=(sin~2 45°/2)~2 (sin~2 135°/2) (sin~2 225°/2)~2 (sin~2 315°/2)~2  相似文献   

7.
本文将探求,具备什么样特征的三角式,可以构造相应的三角对偶式,以及施行怎样的运算顺序,就能达到化繁为易的目的。一、由公式sin~2α+cos~2α=1,cos~2α-sin~2α=cos~2α,cosα·cosβ±sing·sinβ=cos(α±β),sinα·cosβ±cosα·sinβ=sin(α±β)可以得出,具备上述特征的三角式,即为本文探求的第一类三角式。下面举例说明。  相似文献   

8.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

9.
一、三角对偶式例1。化简cos~2α cos~2β-2cosαcosβcos(α β). 设原式为A,设B=sin~2α sin~2β 2sinαsinβcos(α β),则A B=2-2cos~2(α β)=2sin(α β),A-B=cos2α cos2β-2cos(α β)·cos(α-β)=0,故A=B=2sin~2(α β). 类似计算cos~2A cos~2B cos~2C 2cosAcosBcosC(A B C=π),Cos~2θ cos~2(θ 120°) cos~2(θ-120°)等.  相似文献   

10.
1987年全国成人高校统一招生数学(文史类)试题的第六题是:证明sin~22x++2cos~2xcos2x=2cos~2x,标准答案为: 左端=(2sinxcosx)~2+2cos~2x(cos~2x--sin~2x)=4sin~2x cos~2x+2cos~4x-2sin~2xcos~2x=2cos~2x(sin~2x+cos~2x)=2cos~2x=右端。 (证法一) 该题证法很多,只要掌握sin2x=2sinxcosx,cos2x=cos~2x-sin~2x=2cos~2x-1=1-2sin~2x及sin~2x+cos~2x=1,则可以从不同角度入手证出,试举几种如下: 证法二  相似文献   

11.
已知 (cos~4α)/(cos~2β) (sin~4α)/(sin~2β)=1,求证 (cos~4β)/(cos~2α) (sin~4β)/(sin~2α)=1。 这是一道数学竞赛题,公布的标准答案均较繁琐。本文将给出两种简洁的解法。 证法一: 设sin~2α=x,sin~2β=y,x、y∈(0,1),则由已知有:x~2/y (1-x)~2/(1-y)=1 ①变形为 x~2(1-y) y(1-x)~2=y(1-y),即 (x-y)~2=0,∴ x=y,由此,①可写为:y~2/x (1-y)~2/(1-x)=1,  相似文献   

12.
如图:ABCD是由两个斜边是1的直角三角形组成,且∠BAD=∠BCD=90°,∠ADB=α,υ∠BDC=β,(0°<α,β<90°)则 AC=sin(α+β),AD=cosα,CD=cosβ。在△ACD中, AC~2=AD~2+CD~2-2AD·CDcos(α+β),即 cos~2α+cos~2β-2cosαcosβcos(α+β) =sin~2(α+β)。这时我们只要令α+β为  相似文献   

13.
错在哪里?     
一、广西东兰中学宋全宁来稿题:设方程x~2-2mx+m+2=0有两个实根,且分别为某直角三角形两锐角正弦的四倍,求m的值。解设直角三角形两锐角分别认α、β,则方程之二根为4sinα和4sinβ=4sin(90°-α)=4cosα,分别代入方程,得 16sin~2α-8msinα+m+2=0和16cosα~2-8mcosα+m+2=0 ∴m=(16sin~2α+2)/(8sinα-1)和m=(16cos~2α+2)/(8cosα-1) 即(16sin~2α+2)/(8sinα-1)=(16cos~2α+2)/(8cosα-1)解得锐角α=45°  相似文献   

14.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

15.
同角三角函数关系式“sin~2α cos~2α=1”在三角恒等变形中具有广泛的应用.本文作一介绍,供大家参考.一、正用例1已知tanα=m≠0,求sinα.解:由sin~2α cos~2α=1,sinα/cosα=tanα,可得tan~2α=sin~2α/cos~2α=1-cos~2α/cos~2α= 1/cos~2α-1,所以cos~2α=1/1 m~2,可得cosα=±1/(?)~(1/2).又m≠0,知α终边  相似文献   

16.
本文举例介绍利用一些熟知的涉及三角形三内角的三角恒等式去解决一类三角函数式求值的问题。例1.求cos~220° cos~240°-cos20°cos40°之值。解在恒等式cos~2A cos~2B cos~2C 2cosAcosBcosC=1中,令A=20°,B=40°,C=120°,有cos~220° cos~240° (1/4)-cos20°cos40°=1,于是cos~220° cos~240°-cos20°cos40°=(3/4)。例2.求sin~220° sin~240°=sin20°sin40°之值。  相似文献   

17.
众所周知,对于任意实数α,恒等式sin~2α+cos~2α=1(Ⅰ)成立.等式(Ⅰ)是最基本的三角恒等式.其右端是实数单位1,左端是α的正弦与余弦的平方和——sin~2α+cos~2α,通常称为三角单位.三角单位在三角学中具有特殊的地位和作用.一、恒等变形中的三角单位在涉及正弦与余弦的方幂的三角恒等变形中,如能恰当地引用三角单位的如下特性:(sin~2α+cos~2α)~n=sin~2α+cos~2α=1,(Ⅱ)  相似文献   

18.
将公式sin~2α cos~2α=1与圆的方程x~2 y~2=1进行比较,易见若点 A(x,y)是角α终边与单位圆x~2 y~2=1的交点,则有x=cosα,y=sinα.考虑点  相似文献   

19.
一、三角公式的变形三角公式是灵活多变的,略举一、二,以示一斑.例1.由sin~2x cos~2x=1可得:i)sin~2x=1-cos~2x=(1 cos)  相似文献   

20.
合分比定理(若a/b=c/d,则(a+b)/(a+b)=(c+d)/(c-d))在代数和几何方面的广泛应用,不少书刊中已作过阐述。但合分比定理在三角学中的应用,却谈得较少。其实,在证明三角恒等式或求值时,应用合分比定理常能简捷地得到答案。本文想通过以下几道例题进行说明。例1 tg~2α=1+2tg~2β,求证 cos~2β==1十cos2α。证先将已知条件变形为 (tg~2α)/1=(1+2tg~2β)/1,应用合分比定理得, (1-tg~2α)/(1+tg~2α)=(-2tg~2β)/(2(1+tg~2β)),而(1-tg~2α)/(1+tg~2α)=cos2α,(-2tg~2β)/2(1+tg~2β)=1/(1+tg~2β)-1=cos~2β-1,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号