首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1.(2000年济南卷)对于函数f(x)=x2+bx+c(b、c∈R),不论α、β为任何实数恒有f(sina)≥0,f(2+cosβ)≤0,(1)求证:b+c=1;(2)求证:c≥3;(3)若f(sina)的最大值为8,求b,c的值.、简答:(1)只有f(1)=1+b+c=0;(2)根据(1)可得f(x)=(x-1)(x-c).-1≤x≤c;(3)c=3.b=-4.  相似文献   

2.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

3.
一、选择题:1.设集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M、y0∈N,则x0y0与集合M、N的关系是().A.x0y0∈MB.x0y0MC.x0y0∈ND.x0y0N2.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于().A.-21a+23bB.21a-23bC.23a-21bD.-23a+21b3.双曲线xa22-by22=1和椭圆mx22+by22=1(a>0,m>b>0)的离心率互为倒数,那么,以a、b、m为边长的三角形是().A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形4.已知f(x)是定义在(-3,3)上的奇函数,当0相似文献   

4.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

5.
最近阅读了2014年《高中数学教与学》第6期叶红萍老师的文章《与不等式有关的最值问题解法探析》,文中的例7是一道以二次不等式恒成立为背景的最值问题,笔者经过解题研究发现这类问题均可通过赋值法求解,题目如下:例1已知对于任意实数x,二次函数f(x)=ax2+bx+c≥0恒成立,且a相似文献   

6.
思考题(四)     
题11.设R是全体实数集合,对于函数f(x)=x~2+ax+b,(a,b∈R)定义集合 A={x|x=f(x),x∈R}, B={x|x=f(f(x)),x∈R}, (1) 若a=-1,b=-2,求 A∪B,A∩B; (2) 若A={-1,3),求B; (3) 若A={a},求证A∩B={a}。题12.设a、b、c分别是△ABC的三个角A、B、C的对边。证明:方程 x~2-2abxsinC+abC~2sinAsinB=0  相似文献   

7.
正一、案例分析题目:已知二次函数f(x)=ax~2+bx+c的图像过点(-1,0),问是否存在常数a,b,c,使不等式x≤f(x)≤1/2(1+x~2)对一切x∈R都成立?此题不仅在辅导资料上流传甚广,而且它有一种奇妙的解法也比较流行,那就是:对于不等式x≤f(x)≤1/2(1+x~2),令x=1,得到1≤f(1)≤1,从而知f(1)=1,即a+b+c=1①;然后根据二次函数f(x)=ax~2+bx+c的图像过点(-1,0),知a-b+c=0②,由①、②知b=1/2,a+c=  相似文献   

8.
对于不等式的证明 ,课本着重介绍了比较法、综合法、分析法 .其实 ,构造二次函数f(x) =ax2 +bx +c(a>0 ) ,利用f(x) ≥ 0恒成立的充要条件Δ≤ 0和 f(x) >0恒成立的充要条件Δ<0来证明 ,也是一种行之有效的方法 .下面以新教材第二册 (上 )课本中的几个习题为例加以说明 .一、若 f(x) =ax2 +bx+c≥ 0 (a>0 ) ,则Δ =b2 -4ac≤ 0例 1 求证 :(ac +bd) 2 ≤ (a2 +b2 ) (c2 +d2 ) .证明 构造二次函数 f(x) =(a2 +b2 )x2 +2 (ac+bd)x +(c2 +d2 ) .当a ,b全为零时 ,不等式显然成立 .设a ,b不全为零 .∵a2 +b2 >0且 f(x) =(ax+c) 2 +(bx+d) 2 ≥ 0…  相似文献   

9.
设函数f(x)=ax2+bx+c(-1≤x≤1),则f(1)=a+b+c,f(0)=c,f(-1)=a-b+c,解得a=1/2f(1)+1/2f(-1)-f(0),b=1/2f(1)-1/2f(-1),c=f(0),从而有f(x)=[1/2f(1)+1/2f(-1)-f(0)]x2+[1/2f(1)-1/2f(-1)]x+f(0),利用这一表示形式可以解下列竞赛题.  相似文献   

10.
高考题1:(陕西·文·21)设函数f(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:f(x)在区间(12,1)内存在唯一零点;(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;(3)设n=2,若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.高考题2:(陕西·理·21)设函数fn(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(12,1)内存在唯一零点;  相似文献   

11.
运用导数研究函数的单调性、极值、最值以及证明不等式,是一种可行性强、操作性简单的方法.一、求函数的解析式【例1】 设y = f(x)为三次函数,且图像关于原点对称,当 x =12时的极小值为-1,求函数f(x)的解析式.解析:设f(x)= ax3 bx2 cx d(a≠0),因为其图像关于原点对称.即f(- x) =- f(x)得ax3 bx2 cx d= ax3 - bx2 cx - d(x∈R),∴b =0,d =0,即f(x) = ax3 cx,由f′(x) =3ax2 c,依题意f′(12) =34a c =0,f(12) =18a c2=-1解之,得a =4,c =-3.故所求函数的解析式为 f(x) = 4x3 -3x.二、求函数的单调区间【例2】 求函数f(x…  相似文献   

12.
构造函数解题需要较强的创新意识,是高考改革的方向,本文愿就此抛砖引玉.一、构造一次函数y=kx+b(k≠0) 例1 设a,b,c∈(-1,1),求证:ab+bc+ca>-1. 解析作辅助函数f(x)=(b+c)x+bc+1.因为f(1)=(b+1)(c+1)>0,f(-1)=(1-b)(1-c)>0,所以在(-1,1)上恒有f(x)>0.又-10,即原不等式成立.例2 设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求x  相似文献   

13.
正(2012年高考山东卷·理12)设函数f(x)=1x,g(x)=ax2+bx(a,b∈R,且a≠0)若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a0时,x1+x20,y1+y20B.当a0时,x1+x20,y1+y20C.当a0时,x1+x20,y1+y20D.当a0时,x1+x20,y1+y20分析一:令a=-2,b=3,1x=-2x2+3x,因式分解-(x-  相似文献   

14.
先看一例 :已知二次函数 f(x)满足条件 :| f(0 ) |≤1,| f (1) |≤ 1,| f (- 1) |≤ 1.试证 :对于 x∈[- 1,1]时必有 | f(x) |≤ 54.证 设 f(x) =ax2 bx c(a≠ 0 ) ,则由f(0 ) =c,f(1) =a b c,f (- 1) =a- b c,可得 a =f (1) f (- 1) - 2 f (0 )2 ,b =f (1) - f (- 1)2 ,c=f(0 ) .又∵ | f(0 ) |≤ 1,| f (1) |≤ 1,| f (- 1) |≤ 1及 x∈ [- 1,1],∴| f (x ) | =| f(1) f(- 1) - 2 f(0 )2 x2 f (1) - f(- 1)2 x f (0 ) | =| f(1)2 (x2 x) f (- 1)2 (x2 - x) f(0 ) (1- x2 ) |≤ 12 | x2 x| 12 | x2 - x| | 1- x2 | …  相似文献   

15.
20 0 2年的高考数学压轴题是 :已知 a>0 ,函数 f( x) =ax- bx2 .( )当 b>0时 ,若对任意 x∈ R都有f ( x)≤ 1 ,证明 a≤ 2 b ;( )当 b>1时 ,证明 :对任意 x∈ [0 ,1 ],| f ( x) |≤ 1的充要条件是 b- 1≤ a≤ 2b ;( )当 0 相似文献   

16.
2004西部数学奥林匹克试题第三题为:求所有的实数k,使得不等式a2+b2+c2+d2+1≥k(a+b+c+d)对任意a,b,c,d∈[-1,+∞)都成立。文[1]给出它的解为k=34,从而上题可改叙如下:定理1对于任意a,b,c,d∈[-1,+∞),有a3+b3+c3+d3+1≥34(a+b+c+d)。证明见文[1]。进一步研究,又可得到如下的几个定理:定理2设k为大于1的偶数,则当n≥(k-1)k-1时,对坌xi∈R(i=1,2…,n),有:ni=1移xik+1≥nk xi。证明考察函数f(x)=nxk+1-kx,则f'(x)=k(nxk-1-1),令f’(x)=0,由k为大于1的偶数,得x=1k-1姨n,即当xk-1姨1n时f(x)单调增,即fmin(x)=f(1k-1姨…  相似文献   

17.
屈昕 《初中生辅导》2015,(30):22-25
数学解题能力的提高,需要借助丰富的解题经验.适当记住一些简洁的结论,可以快速抓住问题的本质,简化思维过程,提高解题效率. 在学习一元二次方程的过程中,我们可以得到下面的结论: 一、设x1、x2是一元二次方程ax2+ bx+c=0(a≠0)的两实根,那么x1+x2=-b/a,x1x2 =c/a 这是因为,当b2-4ac≥0时,一元二次方程的两根为-b+√b2-4ac/2a和-b-√b2-4ac/2c.  相似文献   

18.
函数问题历来是高考命题的重点,考查内容设计新颖,形式多样,综合性强.其中,以函数为背景的不等式问题,是知识网络的一个交汇点,同时也是高考命题的热点问题之一.探求二次函数背景下的不等式问题,实质是将二次函数的有关性质进行适当转化,再归结为不等式问题;其中二次函数性质的基本意义和图像特征,是问题转化的基础.因此,在实际解题中要注重从概念、图像出发,进行逻辑分析、推理和判断,并结合不等式的相关知识求解问题.一、借助不等式性质,实现参数代换转化例1已知函数f(x)=ax2 bx c(a、b、c∈R),当x∈[-1,1]时,f(x)“1.(1)求证:b“1;(2)若g(x)=bx2 ax c(a、b、c∈R),则当x∈[-1,1]时,求证:g(x)“2.分析本题中所给条件并不足以确定参数a、b、c的值,但应该注意到:所要求的结论不是b或g(x)的确定值,而是与条件相对应的“取值范围”.因此,我们可以用f(-1)、f(0)、f(1)来表示a、b、c.证明(1)由f(1)=a b c,f(-1)=a-b c#b=12[f(1)-f(-1)],从而有b=12[f(1)-f(-1)]“21[f(1) f(-1)].∵f(1)“...  相似文献   

19.
文献[1]~[3]对二次函数f(x)=x2+bx+c的迭代进行了探讨,其中文献[2]、[3]得到了关于方程f2(x)=x在特殊情形下根的一个结论:设f(x)=x2+bx+c,记Δ0=(b-1)2-4c,若方程f(x)=x有2个不等实根,则1)当0<Δ0<4时,f2(x)=x只有2个不等实根;2)当Δ0>4时,f2(x)=x有4个不等实根.方程f2(x)=x中的f2(x)为f2(x)=f(f(x)),一般地有fn(x)=f(fn-1(x)).本文将考虑一般二次函数f(x)=ax2+bx+c(其中a≠0且a,b,c∈R)的迭代,用初等方法给出  相似文献   

20.
本文给出一类三角函数的最值问题及其解答,并利用其结论给出若干三角方程的解集. 问题1 已知x∈R,n ∈ N,且n≥1,求f(x)=sin2n+1x+cos2n+1x的最大值与最小值,并求当x取何值时f(x)分别取得最大、最小值. 解 设a=sinx,b=cosx,则可将问题转化为:已知a,b∈R,且a2+ b2=1,求P=a2n+1+ b2n+1(其中n∈N+)的最大、最小值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号