首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
公式S_0=(a_1-a_nq)/(1-q)教材上使用的是“错位相减法”。这种方法用途很广,比如说在求一个等比数列{a_n}与一个等差数列{b_n}对应项积的数列{a_n·b_n}的前n项和时,就可以如此求得: 设{a_n}的公比为q,{b_n}的的公差为d: S_n=a_1b_1+a_2b_+…+a_nb_n (1) 在(1)两边同时乘以{a_n}的公比q: qS_n=a_1b_1q+a_2b_2q+…+a_nb_nq  相似文献   

2.
高中数学人教版第一册(上)第137页有这样一道题:两个等差数列{a_n},{b_n},且(a_1 a_2 … a_n)/(b_1 b_2 … b_n)=(7n 2)/(n 3),求(a_5)/(b_5)的值.分析:设{a_n}的公差为d_1,前n项和为S_n,{b_n}的公差为d_2,前n项和为T_n,则(S_n)/(T_n)=(7n 2)/(n 3).  相似文献   

3.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

4.
大家知道,公差是d的数列{a_n}的通项为:a_n=a_1 (n-1)d,即a_n=dn (a_1-d),可以把它看做n的一次函数,其图像是以d为斜率,纵轴截距为a_1-d的一条直线。当n∈N时,在直线上的对应点为(1,a_1),(2,a_2)…,(n,a_n)的点集,是该直线点集的一个子集。我们可以利用这种关系,巧解有关等差数列问题。例1 已知等差数列{a_n}的项a_m=n,a_n=m(m≠  相似文献   

5.
2001年全国高中数学联赛一试第13题为:设{a_n}为等差数列,{b_n}为等比数列,且b_1=a_1~2,b_2=a_2~2,b_3=a_3~2,(a_1相似文献   

6.
数列求和是中学数学的重要内容之一,也是高考数学的重点考查对象之一.它对于提高数学思维能力十分有益,下面介绍数列求和的几种常用方法。一、错位相减法设数列{a_n}是等比数列,数列{b_n}是等差数列,则求解数列{a_nb_n}或{a_n/b_n}的前n项和S_n均可用错位相减法.例1设{a_n}是等差数列,{b_n}是各项都为正数的等比数列,且a_1=b_1=1,a_3b_5=21,a_5+b_3=13,(Ⅰ)求数列{a_n}、{b_n}的通项公式;  相似文献   

7.
今年广东文科数学的最后一题是设数列{a_n}满足a_1=1,a_2=2,a_n=1/3·(a_(n-1) 2a_(n-2))(n=3,4,…).数列{b_n}满足b_1=1,b_n(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤b_m b_(m 1) … b_(m k)≤1.  相似文献   

8.
题已知{a_n}是等差数列,其公差为 d;{b_n}是等比数列,其公比为 q>1.若 a_2=b_2=2,a_4=b_4.(1)比较 a_1与 b_1,a_3与 b_3的大小;(2)猜想并证明 a_n 与 b_n 大小关系(n≥5).这是成都市高2000级第一次诊断考试数  相似文献   

9.
2006年高考江苏卷最后一题的充分性证明较难,标准答案中公布的两种解法中,构思巧妙,一般很难想到,本文现给出一种思路自然的常规解法.题目:设数列}a_n}、{b_n}、{c_n}满足:b_n=a_n-a_(n 2),c_n=a_n 2a_(n 1) 3a_(n 2)(n=1,2,3,…),证明{a_n}为等差数列的充分必要条件是{c_n}为等差数列且 b_n≤b_(n 1)(n=1,2,3,…).证明:必要性(略)  相似文献   

10.
贵刊1988年1—2期合刊“高中代数综合训练与检测”中有两道练习题的答案是错误的,现纠正如下: 练习一8.有一等差数列{a_n}和等比数列{b_n} 若a_1=b_1>0,a_(2n 1)=b_(2n 1),试比较a_(n 1)和b_(n 1)的大小。原答案:当q≠1时,a_(n 1)>b_(n 1);当q=1时,a_(n 1)=b_(n 1)是错误的,今举一特例说明: {a_n}:3,3,3,3,3.d=0。 {b_n}:3,-3,3,-3,3。q=-1。它们分别是符合题意的等差数列和等比数列,但当n=2时有a_(n 1)=3=b_(n 1),并非a_(n 1)>b_(n 1)。下面给出正确的解答: 设等差数列{a_n}的首项为a_1,公差为d,  相似文献   

11.
题目:已知等差数列{a_n}的首项是 a,公差为 b;等比数列{b_n}的首项为 b,公比为 a,其中a、b∈N ,且 a_1相似文献   

12.
(文)(25) 已知数列{b_n}是等差数列,b_1=1,b_1 b_2 … b_(10)=100.(1)求数列{b_n}的通项b_n(Ⅱ)设数列{a_n}的通项a_n=1g(1 (1/b_n),记S_n是数列{a_n}的前n项和.试比较S_n与(1/2)lgb_(n 1)的大小,并证明你的结论。 (理)(25) 已知数列{b_n}是等差数列,b_1=1,b_1 b_2 … b_(10)=145.(Ⅰ)求数列{b_n}的通项b_n;(Ⅱ)设数列{a_n}的通项a_n=log_n(1 (1/b_n),(其中a>0,a≠1),记S_N是数列{a_n}的前n项和,试比较S_n与1/2log_nb_(n 1)的大小,并证明你的结论, 探源 此二题源于1985年高考上海试题:对于大于1的自然数n,证明  相似文献   

13.
课堂“探究式教学”的案例剖析   总被引:1,自引:0,他引:1  
1 引子不久前一位学生拿着下面的问题:“等差数列{a_n}中,公差d是正整数,等比数列{b_n}中,b_1=a_1,b_2=a_2,现有数据:①2;②3;③4;④5,当{b_n}中所有的项都是数列{a_n}中的项时,d可以取______(填上你认为正确的序号)”(注:本文中所提到的数列均指无穷数列)请教于笔者,待弄清问题后,笔者与学生进行了如下的对话:  相似文献   

14.
<正>解法初探:计算n个正数a_1,a_2,…,a_n的积M=a_1a_2·…·a_n的结果是很麻烦的,若将等式两边取以b(b>0且b≠1)为底数的对数,则变成log_b M=log_b a_1+log_b a_2+…+log_b a_n,这样就将一个积的运算转化为和的运算,使运算得以简化。例如,已知正数等比数列{a_n},令b_n=log_c a_n,c>0且c≠1,则数列{b_n}就是等差数列。这种对"积(幂)的形式"进行"对数化"处理的方法是一个重要的解题手段。  相似文献   

15.
文[1]给出了合成数列{x_n}a_1,b_1,a_2,b_2,a_3,b_3,…的通项公式x_n=1/2[f(n 1/2) g(n/2)] (-1)~(n 1) 1/2[f(n 1/2)-g(n/2)]. 本文用三角函数给出合成数列{x_n}的又一通项公式,并举例说明这个公式的应用。定理如果数列{a_n}和{b_n}的通项分别为a_n=f(n),b_n=g(n),那么,数列{a_n}与{b_n}的合成数列{x_n}的通项公式为  相似文献   

16.
请同学们思考以下问题:问题1:设数列{a_n}是正数等差数列,数列{b_n}是正数等比数列,且a_1=b_1,a(2n 1)=b_(2n 1).试比较a_(n 1)与b_(n 1)的大小关系.学生S_1很快给出了如下解法:因为a_(n 1)>0,b_(n 1)>0,所以,a_(n 1)=(a_1 a(2n 1))/2≥(a_1a_(2n 1))~(1/2)=  相似文献   

17.
’98高考数学压轴题,即第25题(理):已知数列{b_n}是等差数列,b_1=1,b_1 b_2 …… b_(10)=145.(Ⅰ)求数列{b_n}的通项b_n;(Ⅱ)设数列{a_n}的通项a_n=log_a(1 1/b_n)(其中a>0且a≠1),记S_n是数列{a_n}的前n项和。试比较S_n与1/3log_ab_(n 1)的大小,并证明你的结论。此题旨在考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力。解法一:利用数学归纳法求证  相似文献   

18.
<正>等差数列的性质是高考考查重点之一,面对众多的性质,我们如何灵活利用这些性质来解题呢?本文将对等差数列的一个重要性质作出推广,并用所得结论解决一类等差数列的"和问题"。公差为d的等差数列{a_n}的通项公式为a_n=a_1+(n-1)d(n∈N*),若函数f(x)=dx+(a_1-d)(x∈R),则有a_n=f(n)。本  相似文献   

19.
等比性质:“若a_1/b_1=a_2/b_2=a_3/b_3=…=a_n/b_n(b_+b_2+b_3+…+_n≠0),则有(a_1+a_2+a_3+…+a_n)/(b_1+b_2+b_3+…+b_n)=a_1/b_1”.它在数学解题中有着广泛的应用,若能灵活运用并注意它的条件:b_1+b_2+b_3+…+b_n≠0,可以避免繁复的计算或复杂的推理.  相似文献   

20.
等差数列的通项可以表示为a_n=dn+(a_1-d),从函数的观点看,点列(n,a_n)在直线y=kx+b(k=d,b=a_1-d)上.故有下面的命题:命题若{a_n}是等差数列,则点列(n,a_n)在同一条直线上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号