首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
点的妙用     
在某些解析几何习题中,若把点看作是圆锥曲线的退化现象(如点圆,点椭圆等),常常显得生动形象,解题过程也较简洁,这时,点作为一种解题技巧,起着特殊的作用,现举几例. [例1]一圆经过点(0,-5),且与直线4x-3y-25=0相切于点(4,  相似文献   

2.
解析几何中求解二次曲线问题时 ,有时借助退化的二次曲线 ,可以优化解题过程 ,简化运算 ,使一些曲线方程的求解问题巧妙解决 .1 退化曲线的类型1 方程 (x -D2 ) 2 +(y -E2 ) 2 =D2 +E2 -4F4,当D2 +E2 -4F =0时 ,表示圆的极限情形 :“点圆” .2 方程(x -m) 2a2 +(y -n) 2b2 =k ,(k≥0 ) ,当k=0时 ,表示椭圆的极限情形 :“点椭圆” .3 方程(x-m) 2a2 -(y-n) 2b2 =k ,当k= 0时 ,表示双曲线的极限情形 :渐近线 .4 方程Ax2 +Bxy +Cy2 +Dx +Ey+F= 0 (A ,B ,C不同时为 0 )若能表示为 (ax +by+m) (ax +by+n) =0 (a ,b不同时为 0且m ≠n) ,…  相似文献   

3.
对有些解几问题,构造辅助圆来处理,实用简便,且富有成效,本文举例说明构造辅助圆解题的若干途径。一、依据“平分”构造辅助圆例1 在椭圆x/16+y/4=1内有一点P(1,1),求经过这点且在这点被平分的弦所在直线的方程和弦长。解:设过点P且被平分的弦为AB,依此构造以P为圆心,AB为直径的圆,其方程为 (x-1)~2+(y一1)~2=R~2. 设A(1+Rcosθ,l+Rsinθ),则点B的坐标为(1-Rcosθ,1-Rsinθ)。  相似文献   

4.
<正>直线与圆锥曲线的公共点,是学生比较头痛的问题,经常出错.如何正确地处理这类问题,现举几个例子加以说明.例1求过点(1,-2)且与圆C:(x-2)2+(y-1)2=1相切的直线的方程.错解设所求直线方程为y+2=k(x-1),整理得kx-y-k-2=0.①已知圆的圆心为C(2,1),根据圆心到直线①的距离等于半径,得  相似文献   

5.
一、数形结合,善于观察图形,充分运用平面几何知识,寻找解题途径 例1 已知点P(5,0)和圆O:x2 +y2=16,过P作直线l与圆O交于A、B两点,求弦AB中点M的轨迹方程. 解:因为点M是弦AB中点,所以∠OMP=90°.点M是在以OP为直径的圆周上,此圆的圆心为(5/2,0),半径为5/2,其方程为(x-5/2)2+y2=(5/2)2,即 x2+y2-5x=0.  相似文献   

6.
解析几何中求解二次曲线问题时,有时借助退化的二次曲线,可以优化解题过程,简化运算,使一些曲线方程的求解问题巧妙解决.  相似文献   

7.
<正>圆的方程是圆中的基本内容,也是高考命题的热点,必须认真掌握。求圆方程除掌握圆的一般方程、标准方程及待定系数法外,还要掌握一些技巧才能提高解题能力。常用的策略有以下几种,现举列说明。一、直接法例1求过点A(2,-3)、B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程。分析:设法求出圆的半径,然后利用圆的标准方程即可。解:因为圆心在直线x-2y-3=0上,故可设圆心为M(2b+3,b),再由|MA|=  相似文献   

8.
<正>在解析几何中,我们常常利用曲线束解题,如过两相交直线交点的直线束,过两圆相交的交点的圆束,等等,其最大的作用是简化运算.下面谈谈二次曲线束在解几方面的应用.一、知识梳理二次曲线方程ax2+bxy+cy2+bxy+cy2+dx+ey+f=0,根据参数的不同值,可表示成椭圆、双曲线、抛物线等二次曲线.其实除了上述曲线之外,还可表示成两条直线.形如(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)=0的方程也为二元二次方程,可看成退化的二次曲线.  相似文献   

9.
在解决与圆有关的问题中,充分挖掘圆的几何性质,利用其几何图形的直观性,是简化和优化解题的重要方法,下面分类举例说明.【例1】已知圆经过三点A(1,-1)、B(1,4)、C(4,-2),求此圆的方程.解析:此圆即为△ABC的外接圆,其圆心即为三边垂直平分的交点,故而容易求出圆心M和半径R,易求  相似文献   

10.
我们知道,对于二次曲线f(x,y)=0(圆、椭圆)和平面内一点P0(x0,y0),有如下充要条件。(1)若P0(x0,y0)在曲线f(x,y)=0的内部f(x0,y0)<0.(2)若P0(x0,y0)在曲线f(x,y)=0的内部过P0(x0,y0)的直线L恒与曲线f(x,y)=0相交。如果充分利用“点在曲线内部”这一充要条件和性质解题,不仅求解思路清晰、和谐、优美,而且解题过程简捷、明快,可收到事半功倍的效果。下举数例说明。例1.已知圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)y=7m+4(m∈R),证明:不论m取什么实数,直线L与圆恒交于两点。解析:本题的常规解法是:把直线代入圆方程中并整理成有关一元二次方程,…  相似文献   

11.
高中《平面解析几何》第68页第3题: 已知一个圆的直径端点是A(x_1,y_1)、B(x_2,y_2),证明:圆的方程是 (x-x_1)(x-x_2) (y-y_1)(y-y_2)=0。 这是解析几何中的一道典型习题,它给出了圆的方程的又一种形式。由于该形式含有圆的一条直径的两端点的坐标,故称它为圆的两点式方程。笔者在复习教学中,发现利用它可使以直线与二次曲线相交的弦为直径的圆的有关问题获得简捷解答。 应用1 先设出直线与二次曲线相交的弦两端点的坐标,然后由圆的两点式方程直接写出以相交的弦  相似文献   

12.
1悬而未决的教学设计问题人教A版数学必修2《教师教学用书》第118页例题2:求通过直线l:2x+y+4=0及圆C:x2+y2+2x-4y+1=0的交点,并且有最小面积的圆C′的方程.书中先给出一种耳熟能详的方法 1,接着给出别出心裁的方法2(利用曲线系解题),给人耳目一新,具体过程如下:设所求圆的方程是  相似文献   

13.
圆是最简单的二次曲线,它在解析几何及其它数学分支中都有广泛的应用.对一些数学问题, 若能作一个辅助圆,可以沟通题设与结论之间的关系,从而使问题得解,起到铺路搭桥的作用. 例1 求直线l的方程,使点A(1,1),B (5,3)到l的距离都等于1. 解如图1,分别以A、B为圆心.作半径为1的辅助圆,于是原问题就转化为求两圆的  相似文献   

14.
正圆锥曲线中的切线问题是近几年竞赛、高校自主招生考试的考查热点之一,但教材中关于切线问题涉及较少.以下基于有心二次曲线的统一特征,对有关切线问题进行探讨,以飨读者.1有心二次曲线的统一特征(1)定义相似:圆和椭圆、双曲线的定义都可以围绕动点到定点的距离展开.(2)曲线方程相似:圆和椭圆、双曲线的曲线方程可以统一用x2m+y2n=1(mn≠0)来表示.  相似文献   

15.
一、忽略了对根的检验例1解方程:6/(x~2-1)-3/(x-1)=2/(x 1).错解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.所以原方程的根是x=1.剖析:分式方程是通过转化为整式方程来求解的,解题过程中有可能产生增根,所以求出的根必须检验.正解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.  相似文献   

16.
在学习《直线和圆的方程》一章内容时,学生作业中有这样一道习题:“已知直线l:2x-ay-3=0,⊙E:(x-2)2十y2=1(E为圆心),直线l与⊙E交于相异两点M、N,求△MEN面积的最大值”.此题入口宽,解题思路简洁,解法灵活.但在批阅学生作业时,发现学生解法多,但很多解法极不规范,存在诸多理解、观念上的误区.现就学生作业中一些典  相似文献   

17.
<正>圆锥曲线是高中解析几何的重点内容,主要包括圆、椭圆、双曲线、抛物线,它们也常被称为二次曲线,两条相交直线可视为二次曲线的退化情形.二次曲线方程一般形式为  相似文献   

18.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

19.
解析几何的解题过程涉及变元多,往往导致运算繁琐.如能恰当地巧用"设而不求"策略,就能较大地减少运算量,简化过程,提高解题效率·一、巧求曲线方程【例1】求两圆C1:x2 y2 6x-4=0和C2:x2 y2 6y-28=0的公共弦所在的直线方程·解:设两圆的交点为A(x1,y1),B(x2,y2)则x12 y12 6x1-4=  相似文献   

20.
如何利用数形结合巧解平面解析几何问题   总被引:1,自引:0,他引:1  
世间的一切事物都是发展变化的,无不在运动状态。作为高中数学教师,在教学过程中要用运动、变化、发展的观点来讲解几何知识,不仅可以深刻认识和广泛应用数与形的有关知识,而且可以让学生在数学学习过程中感悟唯物辩证法、方法论的基本思想。在平面解析几何中,利用相关点、直线、圆和曲线的几何性质解题的方法叫做综合几何法.这种方法利于培养数形结合的观点,减少计算量,使问题获得巧解.1利用圆的知识解题例1已知圆O′:(x-14)2+(y-12)2=362内一点C(4,2)和圆周上两动点A、B,使∠ACB=90&#176;,求斜边AB的中点M的轨迹方程.1.1思路。如图2-13,连结MO′、MC、BO′,则O′M⊥MB,|MC|=|AM|=|MB|.设M(x,y),则在Rt△BMO′中,|O′M|2+|BM|2=|O′B|2,又|BM|=|CM|,∵|O′M|2+|CM|2=|O′B|2,即(x-14)2+(y-12)2+(x-4)2+(y-2)2=362,∴动点M的轨迹方程为x2+y2-18x-14y-468=0.1.2解析。本例利用圆的垂径定理和直角三角形的性质,使一个运算量较大的习题,得到极其简便的解法,充分显示了平面几何知识在解析几...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号