首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由数列的递推关系式求其通项公式是高中数学的难点,它能培养和考查学生的逻辑思维能力和分析解决问题的能力,它在高考中经常出现,它是《数学分析》等大学课程的基石。为此笔者在教学过程中,对三类由数列的递推关系式求其通项公式进行了归纳整理,情况如下:定理1.如果数列(a。)满足:a。+;一八n)a,;+g(n)(八周一O),且a;一。,那么数列的通项公式为:a。一。(n-l)+aITfi)+】「。(i)n八。川,。l,。fi=,+l证明:累加消去法.“.将上面n—l个等式相加整理得:a。一。(。。-l)+allf()+2「。(i)nf。…  相似文献   

2.
求递推数列通项的常用策略   总被引:1,自引:0,他引:1  
递推公式是指数列的任意连续若干项所满足的关系式,由递推公式和相应的前若干个已知项可以确定一个数列.利用递推公式法给出的数列称为递推数列.纵观历年来高考试题发现,递推数列题屡见不鲜,其中求某些形式较为简单的递推数列的通项是近几年高考的热点.解决此类问题必须根据递推公式的结构特征,运用一些独特的方法变换递推公式,以便得到等差型、等比型、累加型、累乘型等递推公式,然后通过构造辅助数列等手段去求数列的通项公式.  相似文献   

3.
由数列的前几项和递推关系式求通项公式是数列部分比较常见的题型,在近几年的高考试题中也经常涉及.笔者分析了近几年的高考试题中与数列相关的考题,虽然其形式多样,解答方法也灵活多变,但均可以用这类题的基本方法(通性通法)的1种或几种的组合来解答.本文就这类问题的不同形式,归纳出其通用解法,期望能够给读者有所启发.  相似文献   

4.
秦霞 《数学教学通讯》2011,(36):54-55,58
近年来,数列问题在高考卷中占有重要的地位,其中由数列的递推关系式求通项公式往往出现在综合题和探索问题中,本文将就如何由数列的递推关系式求通项公式的一般类型和常见解法作一个简单探讨和归纳.  相似文献   

5.
6.
递推数列通项公式的求法是现行教材的薄弱内容和难点内容.对于在高考试题中常见的三类递推数列通项公式的求法,不少学生深感茫然和  相似文献   

7.
一般地,若数列{αn}的连续若干项之间满足递推关系断αn=f(αn-1,αn-2,…,an-k),由这个递椎关系及&个初始值确定的数列。叫做递推数列.递推数列的重难点问题是求通项,而求递推数列通项的主要的思路是转化为等差数列或等比数列,其中基本方法有:叠加法;迭乘法;转化为等差、等比数列求通项法;归纳——猜想——证明法等.  相似文献   

8.
9.
作为给出数列基本方式之一的递推公式,在近几年高考题目中占着不小的比重.仅在2005年进行的高考中,有关递推公式的试题就不少于10题,内容涉及数列的各个方面.其中,福建、湖北(理)、江西、重庆(文理)等地的最后一道压轴题就是递推数列题.  相似文献   

10.
文[1]介绍了具有递推关系“an+1=an+f(n)”的数列通项公式的求法,其分析思路如下(原文):这种类型的递推数列,只需要将关系式转化为an+1-an=f(n),然后将n=1,2,…,n-1代入,  相似文献   

11.
在数列问题中,已知递推关系求通项公式是一种常见的题型,在高考试题中也频繁出现.笔者就几种常见题型及基本解法谈谈自己的想法.  相似文献   

12.
由数列递推公式求数列通项公式是近年来高考命题的热点之一,所以在教学中一定使学生掌握所给数列递推公式的类型以及相应的解法,提高学生的数学能力。  相似文献   

13.
已知数列的递推关系式,求通项公式是近几年高考的重点、热点题型,求出通项公式后,相应问题便可迎刃而解.概括起来,求解这类问题有以下几类方法.  相似文献   

14.
新教材第一册 (上 )第 1 1 3页有这样一段内容“象上面这样 ,如果已知数列 {an}的第 1项 (或前几项 ) ,且任一项 an 与它的前一项an- 1 (或前几项 )间的关系可以用一个公式来表示 ,那么这个公式就叫做这个数列的递推公式 .递推公式也是给出数列的一种方法 .”在旧教材中相关的内容只在习题 3- 1 - 4中出现 .显然递推数列在教学内容中的地位被提升 ,加以选用选修 ( )教材的学生不学数学归纳法 ,利用递推关系求数列的通项公式更应得到重视 .事实上 ,去年高考中已出现了这类试题 .例 1 若数列 {an}中 ,a1 =3且 an+1 =a2n,则数列的通项公式是 …  相似文献   

15.
根据递推关系式写出数列的通项公式既是考查学生对数列这部分知识是否掌握的试金石,也是考查学生的观察能力、推理能力、判断能力的重要手段.因此,对学生递推能力的考查一直是高考关注的重点.本文将对高中阶段出现的几种已知递推关系求数列通项公式的方法进行探讨.※递推公式形如an+1=an+f(n)的数列由上式可得:an=an-1+f(n-1)=an-2+f(n-2)+f(n-1)=…=a1+f(1)+f(2)+f(3)…+f(n-1)例:数列{an}中,a1=1且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k∈N+,求数列{an}的通项公式.解:∵a2k+1=a2k-1+(-1)k+3k,a2k+1-a2k-1=(-1)k+3k,∴a3-a1=(-1)1+31,a5…  相似文献   

16.
徐金庄 《考试周刊》2012,(15):50-51
数列的通项公式与递推公式是表达数列特征与构造的两种方法.高考试题中往往只给出数列的递推公式.如果能把递推公式转化为通项公式,很多问题就能迎刃而解.本文列举了六种类型的转化问题.  相似文献   

17.
数列的递推公式类型多样,有累加型递推、累乘型递推、线性递推、分式递推、二阶线性递推等.由数列的递推公式求通项公式是数列学习中的重点和难点,本文利用累加法、累乘法和待定系数法等,构造等差或等比数列,解决了这些数列由递推公式求通项公式的问题.  相似文献   

18.
给出数列{an}的递推公式和首项a1,求数列{an}的通项公式,往往我们可以将所给出的递推公式进行变形,使问题转化为所熟知的bn+1=f(n)bn形式,当bn≠0时,变形得到(b(n+1))/bn=f(n),则由累乘法可得bn=bn/(b(n-1))·(b(n-1))/(b(n-2))…b3/b2·b2/b1·b1= f(n-1)f(n-2)…f(3)f(2)f(1)b1,若f(n-1)、f(n-2)、…、f(3)、f(2)、f(1)的积容易求出,则数列{bn}的通项公式可求出,从而得到数列{an}的通项公式.  相似文献   

19.
在高中数学中,数列知识最活跃,联系最广泛,是高考的重点与难点.而通项公式又是数列的灵魂.对利用递推公式求通项公式进行研究,可揭示这一内容的数学规律与本质.  相似文献   

20.
数列的通项公式是高中数学的一个重点、难点,也是近几年高考的一大热点,本文就递推数列的通项公式的常用求法分类归纳如下:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号