首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

2.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

3.
角平分线是指把一个角分成两个相等的角的射线.关于角平分线具有如下重要的性质:角平分线上的点到角的两边的距离相等.对于一些含角平分线条件的证明问题,巧用这个性质,能简化解题过程,达到事半功倍的效果例1如图,△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F,求证:EB=FC.证明:∵AD平分∠BAC,又DE⊥AB于E,DF⊥AC于F,∴DE=DF.在△BDE和△CDF中,∵∠DEB=90°,∠DFC=90°,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴EB=FC例2如图,△ABC中,O为∠A、∠B平分线的交点,OD⊥BC于D,OE⊥…  相似文献   

4.
线段的垂直平分线(中垂线)的性质定理及其逆定理在解题中有着广泛的应用,现举例说明,供同学们参考.一、用于求线段长例1如图1,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于D、E.若AB=14,△BCD的周长为22,求BC的长.分析:由DE是AC的垂直平分线,得DA=DC.则BD+DC=BD+DA=AB=14.又BC+BD+DC=22,故BC=22-(BD+DC)=22-14=8.(具体证明过程请读者自行完成,下同)二、用于求角的度数例2如图2,AB⊥CD于B,AD的垂直平分线CF分别交AB、AD于E、F,EB=EF,求∠A的度数.分析:由CF是AD的垂直平分线想到连结DE,则AE=DE,故∠A=∠1…  相似文献   

5.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

6.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

7.
<正>一、问题呈现题目如图1所示,在△ABC中,AB=6,AC=3,∠BAC=120°,∠BAC的平分线交BC于点D,求AD的长.二、解法新探及思考解法1如图1,过点D作DE∥AB交AC于点E,则∠EDA=∠BAD.∵AD平分∠BAC,∠BAC=120°,∴∠EAD=∠BAD=∠EDA=60°,故△ADE是正三角形,DE=EA=AD.由DE∥AB,  相似文献   

8.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

9.
补形解证题     
例1已知:AO是△ABC的∠A的平分线,BD垂直于AO的延长线,D是垂足.E是BC中点. 求证:DE=1/2(AB-AC). 略证:延长AC交BD的延长线于F.∵AD平分∠BAF,AD上BD,∴D为BF的中点,由E是BC中的点,得-AC=AB-AC,∴DE=1/2(AB—AC).  相似文献   

10.
大家知道,在△ABC中,若AD是∠A的平分线,则面BD/DC=AB/AC,若D为BC边上任意一点,由正弦定理,得在△ABC中,BD/AB=sinα/sinγ, 在△ACD中,DC/AC=sinβ/sin(180°-γ),两式相除得BD/DC=AB·sinα/AC·sinβ。  相似文献   

11.
平几第二册第65页第2题: 已知:△ABC中,AB=15,AC=20,高AD=12,求角平分线AE的长。人民教育出版社出版的《教学参考书》是这样解答的:如图1,∵AD是高,AB=15,AD=12,∴BD=9,同理求得CD=16,∴BC=25。又AE平分∠BAC,∴AB:AC=BE:EC,解得 BE=75/7,∴DE=BE-BD=12/7,  相似文献   

12.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

13.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

14.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

15.
内(外)角平分线定理:如图1(图2),△ABC中,AD为∠BAC的内(外)角平分线的充要条件是(AB)/(AC)=(BD)/(DC).  相似文献   

16.
1.利用三角形的边长关系 例1.AB为半圆直径,AC、AD指为半圆的满足∠BAC=∠CAD。 求证:AB+AD<2·AC。 简证:如图,显然有DC=BC,且知∠ADC与∠ABC互补。将△ABC绕着C旋转至△EDC位置,易证A、D、E共线,DE=AB,EC=AC。  相似文献   

17.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

18.
一、△ABC的三边长分别为a,b,c,b相似文献   

19.
角平分线定理的应用十分广泛. 一、求比值例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC.求∠B:∠C的值. ^  相似文献   

20.
Steiner定理[1]设D,E是△ABC的边BC上两点,且∠BAD=∠CAE.则有AB2=B-DD·BE.其逆命题也成立,即有 Steiner定理的逆定理设D,E是△ABC的边BC上的两点,若有AB2/AC2=BD·BE/CD·CE,则∠BAD=∠CAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号