首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文从空间图形几何直观的角度出发,给出了求空间两条直线交点坐标的几种有趣的新方法:将线与线的交点转化成求线与面的交点、将线与线的交点转化成求3个平面的交点.或者利用两条直线的交点在它们对某两个坐标面的射影柱面上的条件综合考虑.  相似文献   

2.
<正>解析几何中两个动点之间的距离的最值(取值范围)归纳起来主要有四种类型:(1)两个动点在一个圆锥曲线上;(2)两个动点分别在两个圆锥曲线上;(3)两个动点分别在一条直线和一个圆锥曲线上;(4)两个动点在一条直线上.下面通过例子具体谈一谈解析几何中两动点间的距离的最值(取值范围)的四种类型的探求方法.1两个动点在一个圆锥曲线上两个动点A、B在一个圆锥曲线上,求这两个动点  相似文献   

3.
定理过定点P(x_0,y_0)的动直线与圆锥曲线交于两点P_1、P_2,则过P_1、P_2的切线交点共线于直线T(见图1,直线T称极线) 证明见参考资料《平面解析几何》辞典(唐秀颖主编) 推论1 若点P在对称油x(y)轴上,则直线T垂直于对称轴x(y)轴。[注] 推论2 若点P和圆锥曲线的焦点重合,则直线T和圆锥曲线的准线重合。推论3 若点P与圆锥曲线的准线和坐标轴的交点重合,则直线T过曲线的焦点且  相似文献   

4.
几何图形的计数   总被引:1,自引:1,他引:1  
给定一个几何图形 ,计算该图形中某种特定的元素有多少个 ,这类问题称为几何图形的计数问题。它在各种数学竞赛中很常见 ,而且学会解这类问题 ,有助于培养学生周密细致的思维能力。本文通过几个初中数学竞赛题 ,讲一些解计数问题的方法。知识点  1、平面上给定n个点 ,每两点连一直线 ,最多可以得到(n -1 )n2 条直线。2、平面上给定n条直线 ,当它们每两条都相交 ,且任何三条都不共点时 ,这n条直线交点最多 ,共有(n -1 )n2 个交点。例 1 怎样在平面上画 1 0条直线 ,使它们恰有 :( 1 ) 2 1个交点 ;( 2 ) 3 1个交点 ;( 3 ) 3 0个交点。分析  …  相似文献   

5.
<正>点差法就是在求解圆锥曲线问题时,利用直线和圆锥曲线的两个交点,把交点代入圆锥曲线的方程并作差,得到一个与直线的斜率以及中点有关的式子,然后再利用学习过的相关知识解决问题的方法。熟练灵活地运用点差法可以帮助我们更好更快地解题。在圆锥曲线中,与弦中点有关的问题,通常都可以采用点差法求解。一、求参数范围例1若拋物线y=ax2-1上总存在两点关于直线x+y=0对称,则实数a的取值  相似文献   

6.
一、要准确分清三个概念的含义 1.直线. (1)直线是向两方无限延伸的一条笔直的线,如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位). (2)一个点可以用一个大写字母表示.一条直线可以用一个小写字母表示.如图1中的直线可以记作l,如果点A、点B在直线l上,那么直线l也可以记作直线AB. (3)一个点P与一条直线l有两种位置关系,如图2,①中:P点在直线l外,②中:P′点在直线l上. (4)两条直线a和b,如果它们只有一个公共点O,这两条直线的位置关系叫做相交,公共点O叫做交点.如图3. (5)经过一点有无数条直线.  相似文献   

7.
问题一两条直线相交有一个交点,三条直线相交最多有几个交点?四条直线相交呢?你能发现什么规律?分析:1、画出图形直接观察,找出交点个数。2、列表比较、探索规律直线条数2条3条4条……n条交点个数1个3个6个变化规律2(2-1)/23(3-1)/24(4-1)/2……n(n2-1)从上述直接观察并比较归纳得出:两条直线相交只有一个交点,三条直线相交最多有三个交点,四条直线相交最多有六个交点,……,一般地,n(n>1)条直线相交最多有n(n2-1)个交点。问题二在一条已知线段上取一点(端点除外),这点把这条线段最多分成三条线段,在这条线段上取两点呢?取三点呢?你能发现什…  相似文献   

8.
点、直线与圆锥曲线的位置关系是高中数学的重要内容,怎样才能学好这部分知识,我认为必须掌握好如何判别过点的直线与圆锥曲线的位置关系,以及直线与圆锥曲线有且仅有一个交点的判别方法.通过本人多年的研究,总结出求过点作直线与圆锥曲线有且仅有一个交点的直线方程的解法必须同时具备以下三个步骤:  相似文献   

9.
圆锥曲线综合题是高考常考题型.这些题目的解法灵活多变,其中涉及圆锥曲线交点问题,可借用交点坐标作为参数,从而列式求解(称之为点坐标法).下面通过几例来分析这种方法的应用特点.例1 P,Q是椭圆x2 4y2=16上的两个动点, O为原点,直线OP,OQ的斜率之积为-1/4,求|OP|2 |OQ|2的值.  相似文献   

10.
<正>"解方程组"与"点差法"都体现了"设而不求,整体代换"的解题思想与技巧,对解决直线与圆锥曲线位置关系一类题目有着广泛而重要的应用.现在通过举例来说明.一、解方程组在解题中,将直线的方程与圆锥曲线的方程联立,消去一个变量后可得到一个二次方程,控制、讨论这个方程的根,并结合韦达定理,可以解决如下问题:(1)判断直线与圆锥曲线的位置关系(相交、相切、相离);(2)交点问题(公共点的个数,与交点坐标相关的等式或不  相似文献   

11.
圆锥曲线是平面解析几何研究的主要对象。如果把圆锥曲线定义中的关键词“和(或差)”换为“平方和(或平方差)”,那么动点的轨迹或者仍然是圆锥曲线,或者是直线;一条直线,只要不与抛物线的对称轴及双曲线的渐近线平行,那么它与圆锥曲线相切的充要条件是它们只有一个公共点。这是圆锥曲线有别于其它二次曲线的一个重要特征;圆锥曲线也有类似于平面几何中切割线定理的表达式,这些表达式揭示了圆锥曲线上任意一点与共对称轴上特殊点之间的一种特殊关系。了解上述三个结论,对于进一步研究圆锥曲线的性质是十分有益的。  相似文献   

12.
回眸2022年北京、浙江及全国甲、乙卷4套高考数学试题的压轴题,研究者不难发现解析几何是排在首位的,也的确压准了中学数学教学中的轴线,并且深深地切入考生的痛点——数学运算策略、习惯与关键能力方法.通过纵向比较近5年高考解析几何趋势和横向剖析2022年全国4套试题及北京、浙江等试题,研究者就会发现压轴题其实都是涉圆锥曲线一条直线上点的坐标表示另一点的坐标的求解问题.顺着命题发展延伸脉络来观察,涉圆锥曲线的两条直线交点坐标求解问题会成为新的热点.鉴于此,文章将就命题生成机理分析、命题生成案例举隅、涉圆锥曲线两条直线交点坐标运算问题进行阐析.  相似文献   

13.
点差法设出直线与圆锥曲线的两个交点A(x1,y1),B(x2,y2),将两点的坐标分别代入圆锥曲线方程,将所得两式作差.适用范围已知线段AB的中点,求直线AB(的斜率);已知直线  相似文献   

14.
一直线与圆的三种位置关系(利用直线与圆的公共点的个数定义圆与直线的位置关系)1.相交如果一条直线与圆有两个公共点,那么就说这条直线与这个圆相交,直线叫圆的割线,这两个公共点叫交点.2.相切如果一条直线与圆有且只有一个公共点,那么就说这条直线与这个圆相切,这条直线叫圆的切线,这个公共点叫切点.3.相离如果一条直线与圆没有公共点,那么就说这条直线与这个圆相离.  相似文献   

15.
直线与圆锥曲线经常结合出题,当直线与圆锥曲线有两个交点的时候,这时候"弦的中点""直线的斜率""圆锥曲线上两点关于直线的对称"这一类问题是圆锥曲线中的常见题型。  相似文献   

16.
<正>在求解圆锥曲线一类问题时,若题目中给出直线与圆锥曲线相交被截得线段中点坐标的时候,把直线和圆锥曲线的两个交点坐标代入圆锥曲线的方程,然后将两个等式作差,得到一个与弦的中点坐标和斜率有关的式子,从中求出直线的斜率,然后利用中点求出直线方程。通常我们将与圆锥曲线的弦的中点有关的问题称之为圆锥曲线的"中点弦问题",把这种代点作差的方法称为"点差法"。"中点弦问题"如果能适时运用点差法,  相似文献   

17.
直线与圆锥曲线的位置关系按公共点的个数分类有三种:无公共点(通常称“相离”),一个公共点(相切于一点或相交于一点),两个公共点(两交点的部分通常称为圆锥曲线的弦).而在适当的坐标系中来研究此位置关系,常根据直线与圆锥曲线  相似文献   

18.
<正>问题阅读:我们知道,在数轴上,x=1 表示一个点.而在平面直角坐标系中,x=1表示一条直线,我们还知道,以二元一次方程2x -y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①,观察图①可以得出:直线x=1 与直线y=2x+1的交点P的坐标(1,3)就是  相似文献   

19.
圆锥曲线的两个性质   总被引:1,自引:0,他引:1  
本文给出圆锥曲线的两个性质,并举例说明其应用.性质1:圆锥曲线与过定点的直线相交于A、B两点,过A、B两点的两切线的交点在同一直线上.例1对于双曲线22ax2-by2=1(a>0,b>0),若过  相似文献   

20.
<正>1过直线交点的圆锥曲线系我们知道,平面内任意3点不共线的5点可以确定唯一的一条二次曲线,其方程可以用F(x,y)-ax2+2bxy+cy2+2dx+2ey+f=0(a2+b2+c2≠0)表示,圆锥曲线分为以下类型:(1)椭圆型(包括圆、点和虚椭圆);(2)双曲线型(包括两条直线相交);(3)抛物线型(包括两条直线重合或平行及两条虚平行直线).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号