首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正> 命题1 如果对于函数f(x)的定义域内任意一个x,都有f(x+T)=f(x-T)那么f(x)是周期函数,2T为它的一个周期证∵f(x+2T)=f[(x+T)+T] =f[(x=T)-T]=f(x)∴f(x)为周期函数,并且2T是它的一个周期.命题2 如果对于函数f(x)的定义域内任意一个x,都有  相似文献   

2.
高中数学竞赛中有些命题可转化为周期问题,关键是如何发现和巧妙地运用周期性.现分类归纳如下,供同学们参考. 例1 已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求  相似文献   

3.
我们将没有明确给出解析式的函数称为抽象函数,本文就如何确定抽象函数的周期性通过实例介绍一些技巧,供学习参考。 1 合理赋值 在确定抽象函数的周期时,如果题设条件中含有f(a)=b(a、b为常数)等类似条件时,合理赋以特殊值,常可使问题迎刃而解。 例1: 设函数f(x)是定义在R上的奇函数,且f(1)=0,并对任何x∈R均有f(x+2)-f(x)=f(2),则f(x)是以2为周期的周期函数。 分析:因为f(x)是R上的奇函数,所以对一切x∈R都有:f(-x)=-f(x) 又f(x+2)-f(x)=f(2)。 令x=-1,得f(1)-f(-1)=f(2), 即f(1)+f(1)=f(2), 从而f(2)=2f(1)=0 所以f(x+2)=f(x)+f(2)=f(…  相似文献   

4.
读本刊1991年第五期《由一类函数方程确定的周期函数》》,深受启发,特再给出几种由函数方程所确定的周期函数,权作该文的补充。定理1 若函数f(x)(x∈R)对任x满足方程 f(x+α)+f(x+β)=k (1) (α、β、k均为实常数,α≠β),则f(x)是以2|α-β|为一个周期的函数。证明由(1)可知,对(?)x∈R有 f(x+a)=k-f(x+β) 将上式中x换成x-a,则有 f(x)=k-f(x+(β-α)) 反复使用上式,则有 f(x)=k-[k-f(x+2(β-α))] =f(x+2(β-α)) 同理可证 f(x)=f(x-2(β-α)) 则f(x)是以2|α-β|为一个周期的函数。定理2 若函数f(x)(x∈R)对任x满足方程 f(x+a)+f(x+β)=2f(x+(α+β)/2)cosmπ/n(2) (其中α≠β,n为非1自然数,m为非零整数,且n、m  相似文献   

5.
目前,各大、中专教材对周期函数是这样定义的:“对于函数f(x),如果存在不为零的常数T,使得对定义域D内的一切X,都有f(x T)=f(x)成立,则函数f(x)叫做周期函数,T叫做这个函数的周期。显然若T为函数f(x)的周期,则KT(K=±1,±2,……)也是它的周期。通常周期函数的周期是指最小正周期”。由定义,对任意x∈D,若有f(x T)=f(x),T≠0,则必有f(x-T)=f(x)。事实上此结论未必成立。因为对任意x∈D,若有x T∈D且f(x T)=f(x),T≠0,未必有x-T∈D,从而未必有f(x—T)=f(x)。例如,函数f(x)=x-[x],x∈D,其中[x]为x的最大  相似文献   

6.
在高中数学教学中,对于函数f(x)=sin x cosx的最小正周期的求法,总避开不提.问题的提法,多以选择题或是证明题的形式出现.如求证:f(x)=sin x cosx的最小正周期是2π.解题过程很简单:证明∵对任意的x∈R,都有f(x π2)=sin(x π2) cos(x π2)=cos x ?sin x=f(x).∴T=π2是函数f(x)=sin x cosx的周期.假设存在0相似文献   

7.
《全日制十年制学校高中课本·数学》第一册p.39页习题二中有这样一道题目: “下列函数哪些是奇函数、偶函数?哪些不是奇函数也不是偶函数? (1) f(x)=5x+3;(2) f(x)=5x;(3) f(x)=x~2+1;(4) f(x)=x~2+2x+1;(5) f(x)=x~(-2)+x~4;(6) f(x)=x~(-3)+x。”易知(2)(6)是奇函数,(3)(5)是偶函数,(1)(4)不是奇函数也不是偶函数。但是对于任何一个初等函数是否仅为以上三种类型呢?根据函数的奇偶性。一个函数可以  相似文献   

8.
两函数f1(x),f2(x)的最小正周期分别为T1,T2,当(T1)/(T2)为有理数时,和函数f(x)=f1(x) f2(x)的最小正周期是什么?  相似文献   

9.
高中《数学》定义周期函数,对于函数y=f(x),如果存在一个常数T≠0,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),则函数y=f(x)叫做以T为周期的周期函数.对于周期函数y=f(x)所满足的条件f(x+T)=f(x)进行变式,一直是高中数学教学的难点和重点,由于以周期为情景设计的题目,思考的途径广,创造性要求高,解决问题的思路和手段体现了很丰富的数学思想及方法,从而深为各种类型的考试命题者所厚爱,以下将笔者在教学实践中总结的几种变式探索供参考.  一、若 f(x+T)=-f(x),则 2T是f (x)的周期,即f(x+2T)=f(x)证明:f(x+2T)=f(x+T+T)=-f(x+…  相似文献   

10.
周期函数     
定义1 对于函数f(x).如果存在一个不为零的常数T,且 (1)对于函数定义域中自变量x的任意数值,x T和x-T都属于函数的定义域; (2)对于函数定义域中的任意x,都有 f(x T)=f(x)或f(x-T)=f(x),则称函数f(x)是以T为周期的周期函数.  相似文献   

11.
关于周期函数,中学课本中已有明确定义,这里不再赘述。而贵刊1994年第9期P.37页刊登的《周期函数》中,是这样定义周期函数的:“对于函数f(x),如果存在一个不为零的常数T,且 (1)对于函数定义域中自变量x的任意值,x T和x-T都属于函数的定义域; (2)对于函数定义域中的任意x,都有f(x T)=f(x)或f(x-T)=f(x),则称函数f(x)是以T为周期的周期函数。 笔者认为,这个定义存在两个问题,一是条件(1)是多余的,不符合对一个概念下定义的原则。因为由(2)f(x T)=f(x)或f(x-T)=f(x)可知x T或x-T应属于定义域,否则其函数值谈不上相等。二是在(1)中说“x T和x-T都属于这个函数的定义域”,这又增加了限制条件,从而缩小了概念的外延。实际上x T和x-T不要求都属于这个函数的定义域,x T和x-T中有一个属于定义域即可。如,对于函数f(x)=  相似文献   

12.
基本初等函数的周期性,我们比较熟悉.而由基本初等函数复合而成的初等函数,它的周期性的判定,则麻烦多了.本文试图通过几个例子和结论,谈谈非周期函数的判定. 一、从周期函数的定义域来判定由周期函数的定义知,周期函数的定义战必须是没有上界或者没有下界的,所以如果定义域有界,那么马上就可以断定此函数是非周期函数.如函数f(x)=sinx~(1/2)+cos(1-x)~(1/2)的定义域[0,1]是有界的,所以f(x)不是周期函数. 例1 求证函数f(x)=sin 1/x不是周期函数. 证明:∵f(x)的定义域是(-∞,0)∪(0,+∞), ∴如果f(z)是周期为T的函数,那么对任何x≠0,都有f(x+T)=f(x)成立,令x=-T≠0,得  相似文献   

13.
笔者最近对递推函数的周期作了些探究,得到了一组十分优美的结论,且在国内外数学竞赛中有着广泛的用途,在此给出来与读者共赏.结论1若函数f(x)(x∈R)满足f(x m)=11-f(x),则函数f(x)是周期为3m的周期函数.证明因为f(x m)=1-1f(x),①用x m代替①式中的x,则有f(x 2m)=1-f(1x m).②①式代入②式化简,得f(x 2m)=f(fx()x)-1.③用x m代替③式中的x,则有f(x 3m)=f(fx( x mm))-1.④①式代入④式化简,得f(x 3m)=f(x).所以函数f(x)是周期为3m的周期函数.结论2若函数f(x)(x∈R)满足f(x m)=1 f(x)1-f(x),则函数f(x)是周期为4m的周期函数.证明因为f(x m)=…  相似文献   

14.
<正>不管是高一初学函数者,还是久经沙场的高三学生,解答有关函数性质的题目时都有较大困难。本文将从函数的奇偶性、对称性、周期性角度来研究抽象函数,希望对同学们的解题能有些帮助。例1 (2018年全国Ⅱ卷理科数学第11题)已知函数f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=__。  相似文献   

15.
一、周期函数 设函数f(x)的定义域为数集A 定义1,若存在T>0,对任意x∈A且x±T∈有: f(x±T)=f(x)则称函数f(x)为周期函数,T称为函数f(x)的周期。 定义2,对于周期函数y=f(x),如果存在一个最小正数Z,能使x取定义域中的任意值时,等式f(x±Z)=f(x)恒成立,那么这个最小的正周期Z称为函数f(x)的周期,亦称基本周期。 充分理解这两个定义的实质,必须弄清以下几个问题: (1)若要证明一个函数y=f(x)是周期函数,必须严格证明它符合定义的条件,即找到非零常数T,使f(x=T)=f(x)。  相似文献   

16.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

17.
1 问题提出 题1 (2008陕西卷)定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-2)等于( )  相似文献   

18.
y=f(x)的抽象函数方程中,有些方程有特定的几何意义,如f(x)=f(2a -x),f(x)+f(2a-x)=2b分别是轴对称(对称轴x=a)中心对称(对称中心(a,b))函数,特别地,a=b=0时,分别是偶函数和奇函数,f(x+T)=f(x)是周期函数,记住它们对解决问题很有意义.本文用这几个抽象函数方程给出2012全国高考四川卷(文、理)数学12题的快捷解法.  相似文献   

19.
奇偶性是函数的重要性质之一,应用广泛,是高考和数学竞赛命题的热点,灵活运用它可使许多难题迎刃而解.现将函数奇偶性的应用归纳如下,以供同学们复习时参考.一、求函数的值例1若函数f(x)与g(x)定义在R上,且f(x-y)=f(x)g(y)-g(x)f(y),f(-2)=f(1)≠0,求g(1)+g(-1)的值.解f(y-x)=f(y)g(x)-g(y)f(x)=-f(x-y),所以f(x)是奇函数.令x=-1,y=1,则f(-2)=f(-1-1)=f(-1)g(1)-g(-1)f(1)=-f(1)g(1)-g(-1)f(1)=-f(1)[g(1)+g(-1)].∵f(-2)=f(1)≠0,∴g(1)+g(-1)=-1.二、求参量的值例2若关于x的方程arctan(1-x)+arctan(1+x)=a有唯一解,求a的值.解令f(x)=arct…  相似文献   

20.
一设A、B、λ是非零实数.考虑函数方程 f(x+λ)=Af(x)+BF(x-λ.(1)试问:在什么条件下,满足(1)的f(x)是以mλ(m∈N)为周期的函数? 将x换成x+(n-1)λ(这里n∈N,且n≥2),则等式(1)可以改写成 f(x+nλ)=Af(x+(n-1)λ)+Rf(x+(R一2)λ)。因此,若设F_n=f(x+nλ)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号