首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1+x2+p=2x+p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1+x2/2.  相似文献   

2.
<正>关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式((1+k2)[(x_1+x_2)2)[(x_1+x_2)2-4x_1x_2])2-4x_1x_2])(1/2)求出弦长。运用整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过  相似文献   

3.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1 x2 p=2x p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1 x2/2.……  相似文献   

4.
已知直线的参数方程{x=x_0+at,y=y_0+bt和二次曲线ax~2+bxy+cy~2+dx+ey+f=0当直线和二次曲线相交时,如何计算弦的长度,这是解析几何中一个常见的问题。本文试图给出应用直线的参数方程求弦长的一般万法。  相似文献   

5.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

6.
1问题的提出试题已知椭圆C:x2+4y2=16,过点P(2,1)作一直线l交椭圆C于A,B两点,若点P为交点弦AB的中点,求直线l的方程.这是一道我校"圆锥曲线与方程"一章阶段测试的试题,讲评试题时笔者采用的是"点差法"与"设而不求"两种常规方法,课后有一位同学提出教辅材料中介绍的一种简解方法如下:将点P(2,1)代入椭圆的切线方程x0x+4y0y=k,得2x+4y=k,点P(2,1)在此直线上得k=8,则直线l的方程为2x+4y=8即  相似文献   

7.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

8.
<正>1引入例1:直线l过抛物线y2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2:直线l过抛物线y2:直线l过抛物线y2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=8y相交所得的弦为PQ,求PQ的中点M的轨迹方程。分析上述三个例题的轨迹方程,得到如下结论:过抛物线内对称轴上一定点(包括顶点)的直线截抛物线所得弦中点的轨迹是一条以该定点为顶点,通径为原抛物线的一半的抛物线,且所得抛物线开口方向和对称轴与原抛物线相同。  相似文献   

9.
<正>已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)/(a2)/(a2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)的  相似文献   

10.
直线与圆锥曲线相交问题一直是高考的热点和难点,其中有不少题都直接或间接涉及到有关弦长问题,且部分学生在求解有关弦长问题的时候,只会机械的套用弦长公式,造成解题运算量大,不能有效的解决这类问题。下面就弦长的本质,弦长公式,焦点弦,圆的弦长四个方面来探寻解决弦长问题的思路。一、利用两点距离公式直接求解图1例1如图1,设抛物线y2=2px(p>0),Rt△AOB内接于抛物线,O为坐标原点,AO⊥BO,AO所在的直线方程为y=2x,|AB|=5√13,求抛物线方程。  相似文献   

11.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

12.
解析几何中有一类韦达定理与弦长紧密联系的题型,兹举例说明. 首先,给出一个弦长公式表达式. 设直线y=kx+b与非退化圆锥曲线相交于两点A(x_1,y_1),B(x_2,y_2),则 |AB|=((x_1-x_2)~2+(y_1-y_2)~2)~(1/2)(*) 为使(*)与韦达定理紧相联,自然会注意到  相似文献   

13.
圆锥曲线是高中数学的重要内容,而活用焦点弦诸多独特性质解决应变问题成批。例如: 1.圆锥曲线是抛物线的充要条件是焦点弦为直径的圆与准线相切。 2.已知y~2=2px的焦点弦一端过A(3,23~(1/2)),则此焦点弦方程为y=3~(1/2)·(x-1);若此焦点弦为入射光线,则其反射光线的方程如何? 3.已知抛物线的顶点是椭圆16x~2+25y~2=400的右焦点,且两曲线的公共弦过抛物线的焦点,则此抛物线方程如何?  相似文献   

14.
我们知道,椭圆x2/b2+y2/b2=1(a>b>0)、双曲线x2/a2-y2/b2=1(a>0,b>0)、抛物线x2=2py(p>0)都是对称轴为纵轴(y轴)的圆锥曲线.本文给出以上三种关于纵轴对称的圆锥曲线定点弦的一个新性质.  相似文献   

15.
文章给出了抛物线y2=2px(或y2=-2px)的弦的中点、弦长及抛物线与弦所围成的面积之间的关系.这些关系基本上是充要条件.  相似文献   

16.
直线与圆锥曲线问题,一直是高中数学研究的重点所在,而作为直线与圆锥曲线中特殊的点——弦中点问题,更是为我们平常之所见.一、椭圆与双曲线的弦中点性质设AB为圆锥曲线x2/m+y2/n=1的一条不垂直于坐标轴的弦,异于原点的点P(x0,y0)为AB中点,则kAB·kOP=-n/m.证明(点差法)如图1,设A(x1,  相似文献   

17.
1问题众所周知,圆具有如下的性质:如果.AB是圆O:x2 y2=r2的一条弦(不包括直径),M(x0,y0)是弦AB的中点,那么OM⊥AB,从而当x0y0≠0时,有kOM·kAB=-1,而,故,也就是说:知道了弦的中点坐标我们便可以直接写出此弦的斜率.  相似文献   

18.
这类问题已有一般解法,本文拟分三种情况讨论。一、求平行弦的中点轨迹例1.已知椭圆x~2/a~2+y~2/b~2=1(a>b>0),求斜率是k的平行弦的中点轨迹。解设弦的两端点为P_j(x_j,y_j)(j=1,2),中点为P(x,y)。则有  相似文献   

19.
代银 《中学教研》2006,(12):38-39
文献[1]给出了双曲线平行弦的2个优美性质:性质1过双曲线ax22-yb22=1(a>0,b>0)顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.性质2MN是过双曲线x2a2-by22=1(a>0,b>0)焦点F的弦,过双曲线中心O的半弦OP与MN平行,则|OP|2=2a|MN|.在此基础上,笔者对椭圆与抛物线的平行弦做了探究,有些结论令人惊喜.图1定理1如图1,过椭圆x2a2+yb22=1(a>b>0)顶点A的弦AQ交y轴于点R,过椭圆中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.证明设OP的参数方程为x=tcosα;y=tsinα,(α为倾斜角,t为参数)将x,y代入椭圆方…  相似文献   

20.
1.对抛物线y2=2px(p>0),AB为过其焦点的弦,A(x1,Y1),B(x2,y2),则有:|AB|=x1+x3+p. 证明:抛物线的焦点为F(p/2,0),准线方程是l:x=-p/2.过A、B分别作AA'、BB'垂直于l,垂足为A'、B'.由定义可知  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号