首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the effect of the science writing heuristic (SWH) approach on the quality of prospective science teachers’ (PSTs) argumentative writing and their understanding of the components of argumentation in the SWH approach and their own learning. Ten SWH approach activities were implemented during the semester. The study was carried out with 31 PSTs. A case study design was used. Data included the SWH approach’s grading rubric and semistructured interviews. While the ANOVA and Bonferroni tests were used to analyze the SWH approach’s grading rubric, content analysis was used to analyze the semistructured interviews conducted with 12 PSTs. The ANOVA results showed a statistical difference among the writing performance of the PSTs (F = 14.493, p < 0.01). The findings gathered from the interviews revealed that the quality of the argumentative writing and research skills of the PSTs increased over time. The PSTs made explicit associations among their beginning questions, data and observations, and claims and evidence, and they made distinctions between their data, observations, and evidence. Multiple representations played an important role in providing evidence to support claims. Moreover, the process of negotiation helped PSTs learn more effectively, and they believed that the argument-based inquiry lab was beneficial to their learning and their future vocational careers as teachers.  相似文献   

2.
Argumentation, and the production of scientific arguments are critical elements of inquiry that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. This case study employed a mixed methods research design to examine the development in 5th grade students’ practices of oral and written argumentation from one unit to another over 16 weeks utilizing the science writing heuristic approach. Data sources included five rounds of whole-class discussion focused on group presentations of arguments that occurred over eleven class periods; students’ group writings; interviews with six target students and the teacher; and the researcher’s field notes. The results revealed five salient trends in students’ development of oral and written argumentative practices over time: (1) Students came to use more critique components as they participated in more rounds of whole-class discussion focused on group presentations of arguments; (2) by challenging each other’s arguments, students came to focus on the coherence of the argument and the quality of evidence; (3) students came to use evidence to defend, support, and reject arguments; (4) the quality of students’ writing continuously improved over time; and (5) students connected oral argument skills to written argument skills as they had opportunities to revise their writing after debating and developed awareness of the usefulness of critique from peers. Given the development in oral argumentative practices and the quality of written arguments over time, this study indicates that students’ development of oral and written argumentative practices is positively related to each other. This study suggests that argumentative practices should be framed through both a social and epistemic understanding of argument-utilizing talk and writing as vehicles to create norms of these complex practices.  相似文献   

3.
This study was designed to examine students’ use of multiple modal representations within their written arguments as a consequence of completing a series of investigations of an organic chemistry laboratory course. One hundred and eleven students from a major Midwestern university were involved in using the Science Writing Heuristic (SWH) approach where they are required to use the argument structure of question, claim, evidence and reflection in completing the written report for their instructor on their laboratory investigations. Results indicate that students who achieved a high score for embedded multiple modal representations in the evidence section also constructed high quality arguments. That is, students who were able to embed multiple modal representations in evidence made strong reasoned connections to support their claim(s) and construct a cohesive argument. Further, there were strong correlations between the laboratory examination score and holistic quality of argument. This study suggests there is a need to build support structures pedagogically for the individual in order to help students understanding the role and function of multiple modal representations in science.  相似文献   

4.
One of the challenges of science education is for students to develop scientific knowledge that is personally meaningful and applicable to real‐life issues. This article describes a middle‐school science intervention fostering adolescents' critical reasoning in the context of HIV by strengthening their conceptual understanding of HIV biology. The intervention included two components: critical reasoning activities that fostered knowledge integration and application to real‐world problem solving, and science writing activities that promoted argument building. Two seventh‐grade classes participated in the study. One class participated in the critical reasoning and writing activities (CR&W); the other class participated in critical reasoning activities only (CR group). Results demonstrate significant pre‐ and posttest improvements on measures of students' HIV knowledge, HIV understanding, and critical reasoning about realistic scenarios in the context of HIV, with the improvements being greater in the CR&W group. The discussion focuses on the role of conceptual knowledge in health reasoning, the role of science writing in fostering knowledge integration, and the benefits of a “thinking curriculum” approach to integrated health and science education. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 844–863, 2007  相似文献   

5.
The notion of “science for all” suggests that all students—irrespective of achievement and ability—should engage in opportunities to understand the practice and discourse of science. Improving scientific literacy is an intrinsic goal of science education, yet current instructional practices may not effectively support all students, in particular, students with special needs. Argument‐based inquiry approaches, such as the Science Writing Heuristic (SWH), require all students to construct their scientific understandings by engaging in investigations and negotiating their ideas in multiple contexts, such as discussions and writing. Various SWH studies demonstrated that students engaged in appropriating the language, culture, practice, and dispositions of science generally improved their critical thinking and standardized test scores. The implementation of such an approach has several implications for science and special education research and practice, including how learning environments should be established to encourage the inclusion of all students’ ideas, as well as how scaffolded supports can and should be used to support science learning.  相似文献   

6.
This study investigated the value of using a scaffolded critique framework to promote two different types of writing—argumentative writing and explanatory writing—with different purposes within an argument-based inquiry approach known as the Science Writing Heuristic (SWH) approach. A quasi-experimental design with sixth and seventh grade students taught by two teachers was used. A total of 170 students participated in the study, with 87 in the control group (four classes) and 83 in the treatment group (four classes). All students used the SWH templates as an argumentative writing to guide their written work and completed these templates during the SWH investigations of each unit. After completing the SWH investigations, both groups of students were asked to complete the summary writing task as an explanatory writing at the end of each unit. All students’ writing samples were scored using analytical frameworks developed for the study. The results indicated that the treatment group performed significantly better on the explanatory writing task than the control group. In addition, the results of the partial correlation suggested that there is a very strong significantly positive relationship between the argumentative writing and the explanatory writing.  相似文献   

7.
Our objective was to investigate the impact of the Science Writing Heuristic (SWH) on undergraduates’ ability to express logical conclusions and include appropriate evidence in formal writing assignments. Students in three laboratory sections were randomly allocated to the SWH treatment (n?=?51 students) with another three sections serving as a control (n?=?47 students). All sections received an identical formal writing assignment to report results of laboratory activities. Four blinded raters used a 6-point rating scheme to evaluate the quality of students’ writing performance. Raters’ independent scoring agreement was evaluated using Cronbach's α. Paper scores were compared using a t-test, then papers were combined into low-scoring (3.5 of 6 points) or high-scoring (>3.5 of 6 points) sets and SWH and control cohorts were compared using Pearson's chi-square test. Papers from the SWH cohort were significantly (P?=?0.02) more likely to receive a high score than those from the control cohort. Overall scores of SWH cohort papers tended to be higher (P?=?0.07) than those from the control cohort. Gains in student conceptual understanding elicited by the SWH approach improved student ability to express logical conclusions about their data and include appropriate evidence to support those conclusions in formal research reports. Extending the writing tasks of the SWH to formal writing assignments can improve the ability of undergraduates to argue effectively for their research findings.  相似文献   

8.
This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12–14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam. The discussion was initiated by asking questions about the phenomenon. Working in groups (with members who had differing viewpoints) and guided by a set of question prompts, an argument sheet, and an argument diagram, students discussed contrasting arguments. One group of students from each class was audiotaped. The number of questions written, the concepts addressed, and the quality of written arguments were then scored. A positive correlation between these factors was found. Discourse analysis showed that the initial focus on questions prompted students to articulate their puzzlement; make explicit their claims and (mis)conceptions; identify and relate relevant key concepts; construct explanations; and consider alternative propositions when their ideas were challenged. Productive argumentation was characterized by students' questions which focused on key ideas of inquiry, a variety of scientific concepts, and which made explicit reference to the structural components of an argument. These findings suggest that supporting students in productive discourse is aided by scaffolding student questioning, teaching the criteria for a good argument, and providing a structure that helps them to organize and verbalize their arguments. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:883–908, 2010  相似文献   

9.
How can classrooms become communities of inquiry that connect intellectually challenging science content with language-based activities (opportunities to talk, listen, read, and write) especially in settings with diverse populations? This question guided a 3-year mixed-methods research study using the Science Writing Heuristic (SWH) approach in cooperation with 2 universities, area education agencies, 6 school districts, 32 elementary teachers, and over 700 students each year. The participating teachers engaged in a yearly summer institute, planned units, implemented this curriculum in the classroom, and contributed to ongoing data collection and analysis. Findings demonstrate that critical embedded language opportunities contribute to an increase in student Iowa Tests of Basic Skills (ITBS) scores in science and language based on level of implementation particularly for elementary students who receive free and reduced lunch (an indicator of living at the poverty level).  相似文献   

10.
Current initiatives in science education in Korea have emphasized science literacy as the most important purpose of science education; that is, science education needs to focus on helping each student to become a scientifically literate person who is able to make reasoned decisions. In attempting to address this focus concern about science literacy, the researchers of this study attempted to implement the Science Writing Heuristic (SWH) approach and examined both the SWH and the control groups using the modified Reformed Teaching Observation Protocol (RTOP). Students’ performance on a Summary Writing Test (SWT) was also examined. Participant students of this study were eighth grade students in three middle schools located in the second biggest city in Korea. Each of the three teachers from three schools taught both the SWH and the control classes. The results of this study showed significant differences between the SWH and the control groups on the SWT. There was a difference in the total RTOP scores between the SWH and the control groups. Differences among schools imply that higher level of teachers’ implementation of the SWH approach would appear to result in better student achievement.  相似文献   

11.
Recently, researchers have demonstrated the benefits of technology-enhanced science inquiry activities. To improve students’ self-regulation and assist them in controlling their own learning pace through inquiry activities, in this study, a self-regulated science inquiry approach was developed to assist them in organizing information from their real-world exploration. A quasi-experimental design was conducted in an elementary school natural science course to evaluate the students’ performance using the proposed learning approach. One class assigned as the treatment group learned with the self-regulated science inquiry approach, while the other class assigned as the control group learned with the conventional science inquiry approach. The students’ learning achievement, tendency of information help seeking, tendency of self-regulation, and self-efficacy were evaluated. The results of the study revealed that the self-regulated science inquiry approach improved the students’ learning achievement, especially for those students with higher self-regulation. In addition, the students who conducted inquiry with the self-regulated learning strategy increased their tendency of information help seeking, self-efficacy, and several aspects of self-regulation, including time management, help seeking, and self-evaluation. Accordingly, this study demonstrated the effectiveness of the self-regulated learning strategy, an approach with high learner control, in terms of improving students’ learning achievement and their self-regulation.  相似文献   

12.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

13.
14.

This review, written to celebrate the 25th anniversary of the International Journal of Science Education, revealed a period of changes in the theoretical views of the language arts, the perceived roles of language in science education, and the research approaches used to investigate oral and written language in science, science teaching, and learning. The early years were dominated by behavioralist and logico-mathematical interpretations of human learning and by reductionist research approaches, while the later years reflected an applied cognitive science and constructivist interpretations of learning and a wider array of research approaches that recognizes the holistic nature of teaching and learning. The early years focus on coding oral language into categories reflecting source of speech, functional purpose, level of question and response, reading research focused on the readability of textbooks using formulae and the reader's decoding skills, and writing research was not well documented since the advocates for writing in service of learning were grass roots practitioners and many science teachers were using writing as an evaluation technique. The advent of applied cognitive science and the constructivist perspectives ushered in interactive-constructive models of discourse, reading and writing that more clearly revealed the role of language in science and in science teaching and learning. A review of recent research revealed that the quantity and quality of oral interactions were low and unfocused in science classrooms; reading has expanded to consider comprehension strategies, metacognition, sources other than textbooks, and the design of inquiry environments for classrooms; and writing-to-learn science has focused on sequential writing tasks requiring transformation of ideas to enhance science learning. Several promising trends and future research directions flow from the synthesis of this 25-year period of examining the literacy component of science literacy - among them are critical listening and reading of various sources, multi-media presentations and representations, effective debate and argument, quality explanation and the role of information and communication technologies/environments.  相似文献   

15.
16.
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.  相似文献   

17.
Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.  相似文献   

18.
We tested the hypothesis that engagement in a few, brief writing assignments in a nonmajors science course can improve student ability to convey critical thought about science. A sample of three papers written by students (n = 30) was coded for presence and accuracy of elements related to scientific writing. Scores for different aspects of scientific writing were significantly correlated, suggesting that students recognized relationships between components of scientific thought. We found that students' ability to write about science topics and state conclusions based on data improved over the course of three writing assignments, while the abilities to state a hypothesis and draw clear connections between human activities and environmental impacts did not improve. Three writing assignments generated significant change in student ability to write scientifically, although our results suggest that three is an insufficient number to generate complete development of scientific writing skills.  相似文献   

19.
There is a current national emphasis on science, technology, engineering, and mathematics (STEM). Additionally, many states are transitioning to the Next Generation Science Standards (NGSS), which encourage teachers to incorporate engineering in science classrooms as well as have their students learn science by doing science. Methods courses are also shifting to adequately prepare preservice science teachers in these areas. This study examines preservice science teachers’ pre- and post-ideal inquiry-based lesson plan scenarios before and after intervention in their Secondary Science Methods I and II courses. These preservice science teachers participated in a variety of opportunities to practice authentic science inquiry (ASI) pedagogical techniques as well as integrated STEM topics, with a particular emphasis on computer programming throughout their 80 h of Methods instruction. ASI is a type of inquiry where students learn science by conducting science research in a grade-appropriate manner. Thirty-eight preservice teachers’ scenarios were analyzed using a rubric from Spuck (2014) to determine the degree to which the ten components of ASI were included in scenarios pre- to post-instruction. Trends in ASI component inclusion are discussed. These findings indicate that preservice science teachers are proficient at writing inquiry-based lessons where they planned opportunities for their future students to collaborate, use scientific instrumentation, and collect and analyze data, but need additional support with developing student activities where students create testable questions, revise their question and methods, participate in peer review, and disseminate their results to their peers or the larger scientific community. Overall, the results suggest Methods instruction should reinforce preservice teachers’ focus on planning lessons which include opportunities for all ASI components. Interventions in the aforementioned areas of weak inclusion may be beneficial to preservice teachers.  相似文献   

20.
This study examined the effect of a quasi‐experimental project on fifth grade English learners' achievement in state‐mandated standards‐based science and English reading assessment. A total of 166 treatment students and 80 comparison students from four randomized intermediate schools participated in the current project. The intervention consisted of on‐going professional development and specific instructional science lessons with inquiry‐based learning, direct and explicit vocabulary instruction, integration of reading and writing, and enrichment components including integration of technology, take‐home science activities, and university scientists mentoring. Results suggested a significant and positive intervention effect in favor of the treatment students as reflected in higher performance in district‐wide curriculum‐based tests of science and reading and standardized tests of oral reading fluency. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 987–1011, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号