首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
记号“≥”我们将它读成“大于或等于”即“不小于”,记号“≤”读成“小于或等于”即“不大于”,表达式 f(x)≥0(或 f(x)≤0)一般称为非严格不等式.我们以记号“≥”为例说明非严格不等式 f(x)≥0的意义.设命题 A 表示 f(x)>0,命题 B 表示 f(x)=0,命题 c 表示 f(x)≥0(xR).则命题 C 即为命题 A、B 的“或”(逻辑和),C=A+B.据逻辑和的意义,只要命题 A、B 中的任一方为真,或双方为真,  相似文献   

2.
同学们经常遇到这样一个命题:“方程(x-1)(x-2)=0的根是x=1或x=2”.这个命题是简单命题还是复合命题呢?不少同学认为是简单命题.其理由是命题p:“方程(x-1)(x -2)=0的根是x=1”是一个假命题,而命题q:“方程(x-1)(x -2)=0的根是x=2”也是一个假命题,由此可得复合命题p或q:“方程(x-1)(x-2)=0的根是x=1或x=2”为假命题,从而可知,这个命题只能是一个简单命题,这显然是一个错误判断.  相似文献   

3.
数列极限中有著名的“两边夹”定理: 若an≤bn≤cn,且liman=limcn=A,则limbn=A. 由于数列是一种特殊的函数,上述定理可以移植到函数当中: 如果函数f(x)在区间D上满足g(x)≤f(x)≤h(x),且g(x)≤h(x)在区间D上恒成立.若存在x0∈D使g(x0)=h(x0)=A,则f(x0)=A. 不妨将这一命题称为函数中的“两边夹定理”,这个十分简明的结论,在高中数学中有着非常重要的作用,但在具体应用中要注意“恒”成立这一条  相似文献   

4.
定义设P(x)为m次多项式,则以a_n=P(n)为项的数列称为m次多项式P(x)的数列。问题设a_n为m次多项式P(x)的数列,问如何求和sum from k=1 to n(a_k)=sum from k=1 to nP(K)。为此我们先给出引理1 设f(x)为m次多项式,则一阶差分Δf(x)=f(x+1)-f(x)为m-1次多项式,命题是显然成立的,故证略。引理2 若P(x)=a_mx~m+…+a_1x+x_0,α_m≠0为一m次多项式。则有f(x)=β_m+1x~(m+1)+…+β_1x,使得Δf(x)=P(x)。证明时只要算出Δf(x)=f(x+1)-  相似文献   

5.
在高等代数中,有关于多项式除法的一个定理:设f(x)和g(x)是F[x]中的任意两个多项式,并且g(x)≠0,那么在F[x]中可以找到多项式q(x)和r(x),使f(x)=g(x)·q(x)+r(x),这里,或者r(x)=0,或者r(x)的次数小于g(x)的次数,  相似文献   

6.
本文给出几个常见的初等函数方程之求解,为讨论方便起见,始终假定所讨论的函数在其定义域上连续。命题1(线性函数方程)对于任何实数x,y,有f(x y)=f(x) f(y)当且仅当存在实数a,使得f(x)=ax。证明:只须证明“仅当”部分(以下的所有命题都是这样)。首先由f(0)=f(0 0)=2f(0)得f(0)=0,对于任何实数x,f(2x)=f(x x)=2f(x),用数学归纳法不难证明对于任何实数x,任何自然数n有f(nx)=nx,而且f(x)=f(n·x/n)=nf(x/n),即f(x/n)=  相似文献   

7.
有不少文章提出用判别式求分式函数的最值或值域,又有不少文章对这类解法提出“辨析”、“商讨”。这已持续了十多年,本文想就中学教材及学生实际,对这个问题提出几点看法。一、用判别式求分式函数最值或值域,无可靠的理论依据。即使侥幸得到正确结果,也只仅对某些特定函数。因此,作为解这类问题的一种方法,不能得到认可。用判别式求最值,对分式函数基本是如下程序,已知函数y=f(x)/g(x) ① (其中f(x)及g(x)是不高于二次的多项式且连续,或是双二次式) 化为yg(x)=f(x)。②  相似文献   

8.
在中学数学中,有一类形如二元函数f(x,y)满足条件g(x,y)≥0(或g(x,g)>0,或g(x,y)=0)的最值问题。求此类二元函数的最值时,如巧用解析几何知识,并借助图形的直观形象,就会得到令人满意的解答。它的一般步骤是: (1) 令f(x,y)=k; (2) 求k的取值范围,使区域g(x,y)≥0(g(x,y)>0)或图象g(x,y)=0与f(x,y)=k的图象有公共点; (3) 从这个范围内求f(x,y)=k的最大、最小值。下面举例说明: [例1] 设x~2 y~2≤4,试求3y-4x的最大值和最小值。  相似文献   

9.
把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.本文笔者对求解函数解析式常用的八种方法逐一进行介绍.一、配凑法已知f[g(x)]=h(x),求f(x)的解析式,常用配凑法.该方法主要通过观察、配方、凑项等使原函数变形为关于“自变量”的表达式,然后以x代替“自变量”得出所求函数的解析式.例1已知f(1 1x)=x12-1,求f(x)的解析式.解析把解析式按“自变量”1 1x变形得f(1 1x)=(1 1x)2-2(1 1x),在上式中以x代替(1 1x),得f(x)=x2-2x(x≠1).这里需要特别注意的是,不要遗漏解析式的定义域x≠1.二、待定系数法已知函数类型或图像以及相关条件,求函数解析式时,常用待定系数法.此方法适用于所求函数的解析式表达式是多项式的情形,首先确定多项式的次数,写出它的一般表达式,然后由已知条件以及多项式相等的条件确定待定的系数.例2已知二次函数f(x)满足条件f(0)=1及f(x 1)-f(x)=2x,求f(x).解析设f(x)=ax2 b...  相似文献   

10.
极限检测题     
一、选择题1.下列命题中正确的是(A)f(x)=xZ+Zxx+2,则丛f(‘)=一2(B)f(x)=去,则勿“·,=0(C)f(x)=万万万,则勿f(‘)=0(D)f(x)=}在(贡.>”’l、Lx+且气x相似文献   

11.
奇偶性是函数的重要性质之一,应用广泛,是高考和数学竞赛命题的热点,灵活运用它可使许多难题迎刃而解.现将函数奇偶性的应用归纳如下,以供同学们复习时参考.一、求函数的值例1若函数f(x)与g(x)定义在R上,且f(x-y)=f(x)g(y)-g(x)f(y),f(-2)=f(1)≠0,求g(1)+g(-1)的值.解f(y-x)=f(y)g(x)-g(y)f(x)=-f(x-y),所以f(x)是奇函数.令x=-1,y=1,则f(-2)=f(-1-1)=f(-1)g(1)-g(-1)f(1)=-f(1)g(1)-g(-1)f(1)=-f(1)[g(1)+g(-1)].∵f(-2)=f(1)≠0,∴g(1)+g(-1)=-1.二、求参量的值例2若关于x的方程arctan(1-x)+arctan(1+x)=a有唯一解,求a的值.解令f(x)=arct…  相似文献   

12.
§1.引言 我们知道,求多项式f(x)与g(x)的最大公因式d(x)的传统方法是辗转相除法(也称欧几里得算法)。而最后倒推求出多项式u(x)与v(x),使得下面的等式成立: u(x)f(x)+v(x)g(x)=d(x)=(f(x),g(x)).(1)用这种方法,当多项式f(x)与g(x)的次数较高,并且其系数较大时是相当麻烦的,而最后求满足(1)式的多项式u(x)与v(x)时,也是很不容易的。  相似文献   

13.
<正>1考情新动向题1(2018年高考全国3卷理科)已知函数f(x)=2(+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-10时,f(x)>0;⑵略.命题组给出的标准答案如下:(1)当a=0时,f(x)=2(+x)ln(1+x)-2x,f′(x)=ln(1+x)-x/1+x.设函数g(x)=f′(x)=ln(1  相似文献   

14.
因式定理的等价命题是: 如果了(x)是x的多项式,则 f(“)=0<=二(二一a)If(x). 特别地f(0)~0<=。xlf(二). 利用这个命题处理某些整除问题,思路明晰,步骤简捷. 例1求证4415一1是n的倍数. 证明:设多项式f(劝一(2二一1)’“一l, f(O)一O,令二一11, 川f(二)则 j’(11)二21‘。一1~441”一1. 1 1 If(11)~4415一1, 即4415一1为11的倍数. 例2求证1997,,,5 1995‘,9,是1996的倍数. 证明:设f(x)~(:· l)’,95 (x一1)‘9,,, f(0)~0,.‘.二{f(x). 令x~1996,则 f(t996)二1997,’95 1995,,97, 1 996】f(1996)~1997”,5 1995‘997 即1997‘,,5 1995‘,9,为…  相似文献   

15.
命题1 设f(x)-g(x)=R(x)-S(x)=常数≠0,则方程(f(x))~(1/2) (g(x))~(1/2)=(R(x))~(1/2) (S(x))~(1/2)或(f(x))~(1/2)-(g(x))~(1/2)=(R(x))~(1/2)-(S(x))~(1/2)有实根的必要条件是f(x)=R(x)(或g(x)=S(x))命题2 设f(x)-g(x)=R(x)-S(x)=t(x)则方程(f(x))~(1/2) (g(x))~(1/2)=(R(x))~(1/2) (S(x))~(1/2)或(f(x))~(1/2)-(g(x))~(1/2)=(R(x))~(1/2)-(S(x))~(1/2)有实根的必要条件是t(x)=0或f(x)=R(x)(或g(x)=S(x)).证明 两个原方程(f(x))~(1/2)±(g(x))~(1/2)=(R(x))~(1/2)±(S(x))~(1/2)化为f(x)-g(x)/(f(x)~(1/2)±(g(x))~(1/2)=R(x)-S(x)/(R(x))~(1/2)±(S(x))~(1/2)  相似文献   

16.
<正>一、多项式整除用F(x)表示数域F上的所有一元多项式的集合,设f(x),g(x)∈f[x]:1.1.若(?)h(x)∈f[x],使得f(x)=g(x)h(x),则称g(x)整除f(x),记作g(x)|f(x).1.2.当g(x)≠0时,设g(x)除f(x)的余式为r(x),则g(x)|f(x)当且仅当r(x)=0.1.3.g(x)|f(x)当且仅当g~m(x)|f~m(x).其中m为任一自然数.1.4.g(x)|f(x)当且仅当g(x~m)|f(x~m).其中m为任一自然数.1.5.g(x)|f(x)当且仅当g(x)在复数域内的根都是f(x)在复数域内的根,且其在g(x)中的重数不大于在f(x)中的重数.  相似文献   

17.
刘开军 《职教论坛》2003,(20):62-62
充分条件、必要条件、充要条件是研究命题条件和结论的相互关系时常用的数学术语,下面在微分中说明这些条件的应用。一、充分条件假言判断“若A则B”为真,则称条件A是B的充分条件。简言之,“有此则必然,无此未必不然”。例1若函数y=f(x)在点x0有极值,且f(x0)存在,则函数y=f(x)在点x0的导数为零,即f’(x0)=0。分析很明显,当函数y=f(x)在点x0有极值且导数存在时,根据导数的几何意义,函数所表示的曲线在该点的切线平行于x轴,即有f’(x0)=0。但倒过来说,“若函数y=f(x)在点x0的导数为零,则函数y=f(x)在点x0有极值”就不一定成立了。因为使y=f(…  相似文献   

18.
由n次多项式f(x)的全部根α1,α2…,αn ,构造一个关于根的对称多项式S(f)=n∑i=1(αi-1/αi) ,如果多项式f(x)在(◎)[x]可以分解为多项式g(x)h(x) ,利用恒等式S(f)=S(g)+S(h) ,得出多项式g(x)的可能形式,并利用上述方法给出Selmer多项式不可约性的一个统一证明.  相似文献   

19.
刘忠 《考试》2005,(10)
多项式函数的导数是高中数学中“导数”一章的主要内容(特别是文科),在利用导数研究多项式函数的性质时容易出现以下三种常见错误,请同学们谨防。错误一f′(x)>0(?)f(x)为增函数;f′(x)<0(?)f(x)为减函数。例1(2004年高考江西卷选修一第19题)已知函数f(x)=ax~3+3x~2-x+1在R上是减函数,求a的取值范围。  相似文献   

20.
若f(t)≤g(x)(或f(t)≥g(x)),在x的允许值范围内恒成立的充要条件是:f(t)≤[g(x)]_(min)(或f(t)≥[g(x)]_(max)).下面介绍这个命题的应用。 例1 设f(x)=lg((1 2~x … (n-1)~x n~xa)/n),其中a是实数,n是任意给定的自然数,且n≥2,如果f(x)当x∈(-∞,1)时有意义,求a的取值范围(1990年高考题)。 解 由题意知1 2~x 3~x … (n-1)~x n~xa>0在x∈(-∞,1)时恒成立,即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号