首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

2.
Abstract

Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the “Front Foot” and “Reverse” styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

3.
Analysing the centre of pressure (COP) and centre of gravity (COG) could reveal stabilising strategies used by golfers throughout the golf swing. This study identified and compared golfers’ COP and COG patterns throughout the golf swing in medial–lateral (ML) and anterior–posterior (AP) directions using principal component analysis (PCA) and examined their relationship to clubhead velocity. Three-dimensional marker trajectories were collected using Vicon motion analysis and force plate data from two Kistler force plates for 22 low-handicap golfers during drives. Golfers’ COG and COP were expressed as a percentage distance between their feet. PCA was performed on COG and COP in ML and AP directions. Relationships between principal component (PC) scores were examined using Pearson correlation and regression analysis used to examine the relationship with clubhead velocity. ML COP movements varied in magnitude (PC1), rate of change and timing (PC2 and PC3). The COP and COG PC1 scores were strongly correlated in both directions (ML: r?=?0.90, P?<?.05; AP: r?=?0.81, P?<?.05). Clubhead velocity, explained by three PCs (74%), related to timing and rate of change in COPML near downswing (PC2 and PC3) and timing of COGML late backswing (PC2). The relationship between COPML and COGML PC1 scores identified extremes of COP and COG patterns in golfers and could indicate a golfer’s dynamic balance. Golfers with earlier movement of COP to the front foot (PC2) and rate of change (PC3) patterns in ML COP, prior to the downswing, may be more likely to generate higher clubhead velocity.  相似文献   

4.
Abstract

When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the “front foot” style or the “reverse” style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

5.
When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the "front foot" style or the "reverse" style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

6.
Weight transfer has been identified as important in group-based analyses. The aim of this study was to extend this work by examining the importance of weight transfer in the golf swing on an individual basis. Five professional and amateur golfers performed 50 swings with the driver, hitting a ball into a net. The golfer's centre of pressure position and velocity, parallel with the line of shot, were measured by two force plates at eight swing events that were identified from high-speed video. The relationships between these parameters and club head velocity at ball contact were examined using regression statistics. The results did support the use of group-based analysis, with all golfers returning significant relationships. However, results were also individual-specific, with golfers returning different combinations of significant factors. Furthermore, factors not identified in group-based analysis were significant on an individual basis. The most consistent relationship was a larger weight transfer range associated with a larger club head velocity (p < 0.05). All golfers also returned at least one significant relationship with rate of weight transfer at swing events (p < 0.01). Individual-based analysis should form part of performance-based biomechanical analysis of sporting skills.  相似文献   

7.
Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)–centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM–COP inclination angle, COM–COP inclination angular velocity and normalised COM–COP inclination angular jerk were used. Professional golfer group revealed a smaller COM–COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM–COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.  相似文献   

8.
ABSTRACT

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards the medial aspect of the foot relating to stability mechanisms associated with the golf swing. We hypothesised that by altering the position of the foot pressure, the lower body stabilisation would improve which in turn would enhance weight distribution and underpinning lower body joint kinematics. Eight professional golf association (PGA) golf coaches performed five golf swings, recorded using a nine-camera motion analysis system synchronised with two force platforms. Following verbal intervention, they performed further five swings. One participant returned following a one-year intervention programme and performed five additional golf swings to provide a longitudinal case study analysis. Golf performance was unchanged evidenced by the velocity and angle of the club at ball impact (BI), although the one-year intervention significantly changed the percentage of weight experienced at each foot in the final 9% of downswing, which provided an even weight distribution at BI. This is a highly relevant finding as it indicates that the foot centre of pressure was central to the base of support and in-line with the centre of mass (CoM), indicating significantly increased stability when the CoM is near maximal acceleration.  相似文献   

9.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

10.
Teaching and playing professionals offer multiple theories concerning the manner in which forces should be applied to the handle of the club during the golf swing. This study extends recent research concerning grip pressures and forces in golf, with the purpose of exploring the similarities and differences between force profiles for a 7-iron and driver swung by proficient golfers. A secondary purpose was to further analyze the way that golfers use grip forces to manipulate the club. Grip forces were measured on eight low handicap golfers (USGA indexes 0 to 7) swinging their own 7-irons and drivers. In total, lead-hand and trail-hand grip forces were isolated as well as anatomically specific forces within the hands. Force profile variability across multiple swings for each golfer and between golfers characterized consistencies and important differences. Correlations between 7-iron and driver force profiles characterized force ‘signatures.’ The data highlight large fluctuations in grip forces during the swing. Marked differences between participants were observed, involving force magnitudes and phasing. Dominant forces arose primarily from the lead hand, specifically the last three fingers. Force profiles were highly repeatable across swings for a golfer (standard deviations < 7% of total force) and force profile correlations between 7-iron and driver for a golfer were remarkably high (r2 = 0.86). Notably, within swing force variability was greatest during club acceleration, but dramatically decreased at impact.  相似文献   

11.
The B-matrix method, which systematically analyses the dynamic response of non-symmetric rigid bodies, such as golf putters, is described. The three-dimensional translational and rotational accelerations of the putter face are represented by linear equations of input forces and moments represented in matrix form. The elements of the 6 × 6 B-matrix physically represent the acceleration intensity factors. This method is applied to the analysis of the putter face control mechanism. The input forces and moments are obtained by the inverse dynamics method, whilst special attention is paid to the putter face rotation, i.e. the angular acceleration around the axis of the shaft, $ \dot{w}_{ox} . $ The contribution of input forces and moments on $ \dot{w}_{ox} $ is discussed quantitatively. The results demonstrate that $ \dot{w}_{ox} $ is present even if the input force and moment are applied perpendicularly to the shaft. A cancelling mechanism to correct this motion is discussed based on the B-matrix method.  相似文献   

12.
高尔夫运动的符号消费   总被引:2,自引:1,他引:1  
从消费社会学的视角,对高尔夫运动在我国发展遭遇的困境进行分析.研究结果表明,我国的高尔夫运动符号消费象征意义超出了其运动本身的价值和意义,并引发人们对它的抵触和不认同;高尔夫运动项目的异化发展导致国家出台政策对其进行控制;大众传播媒介对高尔夫运动符号消费意义的传播起到直接导向作用.  相似文献   

13.
通过文献资料法、问卷调查法及数理统计法,对湖南省辖区内的6个高尔夫俱乐部(9洞以上)现状进行调查,结果显示:湖南省高尔夫球场分布不均衡、消费价格定位较高、俱乐部经营良好、消费群体层次单一.  相似文献   

14.
基于伦理学视角,阐述高尔夫运动所引发的潜在矛盾,诠释环境正义的内涵,并从种际正义、代内正义和代际正义3个维度分析环境正义在高尔夫运动中的应然体现。认为高尔夫运动可持续发展观与环境正义理念相契合,环境正义为高尔夫运动可持续发展提供道德支持和伦理动力。通过树立环境伦理观、建立和完善相关制度、确定评价标准、加强执法和监督等策略来实现环境正义,促进高尔夫运动的可持续发展。  相似文献   

15.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

16.
The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70–76% and 68–73% EMGMAX, respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.  相似文献   

17.
In this paper, we present results on the measurement and analysis of the sound that is produced by the sharp impact loading of a golf ball by a flat massive object (e.g. the face of a golf club). We discuss: (a) the motivation for such a study; (b) some necessary background information on how golf balls vibrate; (c) the techniques used to acquire and analyse the data; and (d) an analysis of the sound made by dropping balls on a smooth, massive concrete target surface. These results establish a simple method for rapid and non-destructive measurement of the effective high-frequency elastic shear moduli of balls and ball cores.  相似文献   

18.
Abstract

The influence of impact sound in putting on players' perceptions of “feel” is explored in this paper. Tests were conducted to investigate the impact sound characteristics of five different ball types using two different putter types. The first test studied the impact sound of purely the ball, while the second test investigated the influence of putter construction and impact location on impact sound for the different ball types. Trends were found between sound spectra peaks in the 2 – 4 kHz range and the compression values of the balls. In addition, frequency content was more dependent on putter type and impact location than on ball construction in the 0 – 2 kHz range. The final test employed a paired comparison technique to investigate players' perceptions of sharpness and loudness of impact sound, ball speed from the clubface and ball hardness. Relationships between the subjective data and the sound characteristics of the balls were then examined. It was found that the ball the players' perceived to have the sharpest and loudest sound, to feel the hardest and to come off the clubface the quickest also had the largest calculated values of loudness and sharpness and had a spectral peak at a higher frequency than the other balls.  相似文献   

19.
The influence of impact sound in putting on players' perceptions of "feel" is explored in this paper. Tests were conducted to investigate the impact sound characteristics of five different ball types using two different putter types. The first test studied the impact sound of purely the ball, while the second test investigated the influence of putter construction and impact location on impact sound for the different ball types. Trends were found between sound spectra peaks in the 2 - 4 kHz range and the compression values of the balls. In addition, frequency content was more dependent on putter type and impact location than on ball construction in the 0 - 2 kHz range. The final test employed a paired comparison technique to investigate players' perceptions of sharpness and loudness of impact sound, ball speed from the clubface and ball hardness. Relationships between the subjective data and the sound characteristics of the balls were then examined. It was found that the ball the players' perceived to have the sharpest and loudest sound, to feel the hardest and to come off the clubface the quickest also had the largest calculated values of loudness and sharpness and had a spectral peak at a higher frequency than the other balls.  相似文献   

20.
In this paper, we present results on the measurement and analysis of the sound that is produced by the sharp impact loading of a golf ball by a flat massive object (e.g. the face of a golf club). We discuss: (a) the motivation for such a study; (b) some necessary background information on how golf balls vibrate; (c) the techniques used to acquire and analyse the data; and (d) an analysis of the sound made by dropping balls on a smooth, massive concrete target surface. These results establish a simple method for rapid and non-destructive measurement of the effective high-frequency elastic shear moduli of balls and ball cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号