首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Excess protein intake can adversely affect the bone via an increase in calcium excretion, while suitable mechanical loading promotes osteogenesis. We therefore investigated whether vibration exposure could alleviate the bone mineral losses associated with a metabolic acidosis. Ten healthy individuals aged 22 – 29 years (median = 25) underwent three 5-day study periods while monitoring their dietary intake. The study consisted of recording the participants' usual dietary intake for 5 consecutive days. Participants were then randomly divided into two groups, one of which received a protein supplement (2 g · kg?1 body mass · day?1; n = 5) and the other whole-body low-magnitude (3.5 g), low-frequency (30 Hz) mechanical vibration (WBV) delivered through a specially designed vibrating plate for 10 min each day (n = 5). Finally, for the third treatment period, all participants consumed the protein supplement added to their normal diet and were exposed to WBV exercise for 10 min per day. Daily urine samples were collected throughout the experimental periods to determine the excretion of calcium, phosphate, titratable acid, urea, and C-telopeptide. As expected, when the participants underwent the high protein intake, there was an increase in urinary excretion rates of calcium (P < 0.001), phosphate (P < 0.003), urea (P < 0.001), titratable acid (P < 0.001), and C-telopeptide (P < 0.05) compared with baseline values. However, high protein intake coupled with vibration stimulation resulted in a significant reduction in urinary calcium (P = 0.006), phosphate excretion (P = 0.021), and C-telopeptide (P < 0.05) compared with protein intake alone, but did not affect titratable acid and urea output. The participants showed no effect of WBV exercise alone on urinary excretion of calcium, phosphate, urea, titratable acid, or C-telopeptide. The results indicate that vibration stimulation can moderate the increase in bone resorption and reduction in bone formation caused by a metabolic acidosis.  相似文献   

2.
Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. The objective of this study was to determine the effect on bone remodelling of physical activities that induce moderate external loading on the skeleton. Thirty-eight male athletes aged 18-39 years (cyclists, n = 11; swimmers, n = 13; triathletes, n = 14) and 10 age-matched sedentary controls aged 22-35 years participated in the study. The study combined measurement of bone mineral density by dual-energy X-ray absorptiometry and bone turnover assessment from specific biochemical markers: serum bone-specific alkaline phosphatase, osteocalcin, urinary type I collagen C-telopeptide and calcium. Compared with the controls and swimmers, adjusted bone mineral density was higher (P < 0.05) in triathletes at the total proximal femur and lower limbs. No differences in bone mineral density were found between cyclists, swimmers and controls. Compared with controls, osteocalcin was higher (P < 0.05) in triathletes and swimmers and urinary type I collagen C-telopeptide was higher in swimmers only. Serum bone-specific alkaline phosphatase was lower (P < 0.05) in cyclists than in all other groups. In conclusion, an osteogenic effect was found only in triathletes, mainly at bone sites under high mechanical stress. Bone turnover differed in athletes compared with controls, suggesting that bone turnover may be sport-practice dependent. Despite some encouraging observations, it was not possible to show that changes in the bone remodelling process were sport-discipline dependent.  相似文献   

3.
PurposeThe aim of this study was to assess the effects of combining the FIFA 11+ and acute vibration training on reactive strength index (RSI) and 505 agility.MethodsSeventy-four male collegiate soccer players took part in the study and were randomly assigned to FIFA 11+ with acute vibration group (FIFA + WBV), FIFA 11+ with isometric squat group (FIFA + IS) or a control group consisting of the FIFA 11+ alone (Con). The warm-up consisted of the FIFA 11+ and was administered to all participants. The participants in the acute vibration group were exposed to 30 s whole body vibration in squat position immediately post warm-up. The isometric group completed an isometric squat for 30 s immediately post warm-up.ResultsRSI significantly improved pre- to post-intervention amongst FIFA + WBV (p < 0.001) due to a decrease in contact time (p < 0.001) in comparison to FIFA + IS and Con, but 505 agility was not affected.ConclusionThe results of this study suggest the inclusion of an acute bout of WBV post FIFA 11+ warm-up produces a neuromuscular response leading to an improvement in RSI. Future research is required to examine the exact mechanisms behind these improvements amongst other populations and over time course of the performance.  相似文献   

4.
ABSTRACT

Acute and adaptive changes in systemic markers of oxidatively generated nucleic acid modifications (i.e., 8-oxo-7,8-dihydro-2?-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo)) as well as inflammatory cytokines (i.e., C-reactive protein, interleukin-6, interleukin-10, and tumour necrosis factor alpha), a liver hormone (i.e., fibroblast growth factor 21 (FGF21)), and bone metabolism markers (sclerostin, osteocalcin, C-terminal telopeptide, and N-terminal propeptide of type 1 procollagen) were investigated following a marathon in 20 study participants. Immediate changes were observed in inflammatory cytokines, FGF21, and bone metabolism markers following the marathon. In contrast, no immediate changes in urinary excretion of 8-oxodG and 8-oxoGuo were evident. Four days after the marathon, decreased urinary excretion of 8-oxodG (-2.9 (95% CI -4.8;-1.1) nmol/24 h, < 0.01) and 8-oxoGuo (-5.8 (95% CI -10.3;-1.3) nmol/24 h, = 0.02) was observed. The excretion rate of 8-oxodG remained decreased 7 days after the marathon compared to baseline (-2.3 (95%CI -4.3;-0.4) nmol/24 h, = 0.02), whereas the excretion rate of 8-oxoGuo was normalized. In conclusion marathon participation immediately induced a considerable inflammatory response, but did not increase excretion rates of oxidatively generated nucleic acid modifications. In fact, a delayed decrease in oxidatively generated nucleic acid modifications was observed suggesting adaptive antioxidative effects following exercise.  相似文献   

5.
Urea production during prolonged swimming   总被引:1,自引:0,他引:1  
Male interscholastic swimmers (n = 8) completed a 4572 m training swim in in 62 +/- 1.1 min (means +/- S.E.) with terminal heart rate and blood lactate of 152 +/- 6 beats min-1 and 6.9 +/- 0.89 mM, respectively. Sweat rate (0.48 +/- 0.095 l. h-1) was lower than similar intensity cycling (1.5 +/- 0.13 l. h-1) or running (1.1 +/- 0.14 l. h-1). Post-swim serum urea N (11.6 +/- 0.71 mM) was elevated (P less than 0.05) vs pre-swim (4.6 +/- 0.39 mM). Post-swim urine volume (860 +/- 75 ml 24 h-1) was reduced (P less than 0.07) and resulted in an elevated (P less than 0.05), but delayed (24-84 h), post-exercise urea N excretion. Although the reduced urine and sweat production during the swim undoubtedly contributed to the elevated serum urea, there must be another explanation because together they could only account for 38% of the observed increase. On the basis of the magnitude of serum urea increase, it appears that the swim caused an increase in urea production (amino acid oxidation). The failure to observe larger increases in urinary urea during recovery indicates that either urea excretion following exercise continues for prolonged periods of time (greater than 48 h) or another significant mode of nitrogen excretion exists.  相似文献   

6.
Little is known about the transmission of vibration to the head when using whole-body vibration (WBV) training machines. This paper investigates the effect of frequency and posture on the transmission of vibration from a vibrating plate to the head of standing people. Nine male participants were exposed to vertical vibration at nine frequencies in the range of 17–46 Hz and vibration acceleration in the range of 7.85–18.64 m/s2 (peak). The participants adopted four standing postures described as standing with locked knee (LK), bent knee (BK), one leg (OL), and one foot to the front and the other to the back (FB). The transmissibility to the head differed among postures (t-test, p < 0.05) and was greatest with the FB posture and smallest with the BK posture. The transmissibility to the head decreased with increasing the frequency (t-test, p < 0.05) but the extent of the decrease depended on the adopted posture. This frequency-posture interaction effect on the transmissibility should be considered when designing a training program. The data will be useful for developing standards/protocols that govern the use of WBV machines as well as for building human body models that can predict potential risks arising from using WBV machines.  相似文献   

7.
Abstract

The aim of the study was to compare the effect of an unsupervised whole body vibration (WBV) training and two different supervised multi-purpose exercise programmes, with and without WBV, on body composition, functional fitness and self-reported well-being in middle-aged adults. Fifty-four healthy participants (age 48.6 ± 6.7 years) were randomly assigned to a vibration group (VG), a multi-purpose exercise group (MG) and a multi-purpose exercise with vibration group (VMG) and trained 3 days a week for 4 months. VG performed a standardised unsupervised WBV protocol, MG a supervised multi-purpose exercise and VMG a multi-purpose exercise including vibration. After training, drop out was significantly higher in VG group (P = 0.016) when compared to VMG group. In both MG and VMG, body composition, sit-up, push-up, sit and reach, agility test, hopping test and self-reported general health significantly improved (P < 0.05). No additive effects were generated by the vibration stimulus. Percentage of body fat and agility test in VG had a significant opposite trend compared to VMG group (P < 0.05). In summary, an unsupervised WBV training should not be chosen for training protocol. However, positive effects on physical fitness and the best results in adherence could be achieved integrating WBV practice into a multi-purpose exercise training.  相似文献   

8.
Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. The objective of this study was to determine the effect on bone remodelling of physical activities that induce moderate external loading on the skeleton. Thirty-eight male athletes aged 18–39 years (cyclists, n?=?11; swimmers, n?=?13; triathletes, n?=?14) and 10 age-matched sedentary controls aged 22–35 years participated in the study. The study combined measurement of bone mineral density by dual-energy X-ray absorptiometry and bone turnover assessment from specific biochemical markers: serum bone-specific alkaline phosphatase, osteocalcin, urinary type I collagen C-telopeptide and calcium. Compared with the controls and swimmers, adjusted bone mineral density was higher (P?<?0.05) in triathletes at the total proximal femur and lower limbs. No differences in bone mineral density were found between cyclists, swimmers and controls. Compared with controls, osteocalcin was higher (P?<?0.05) in triathletes and swimmers and urinary type I collagen C-telopeptide was higher in swimmers only. Serum bone-specific alkaline phosphatase was lower (P?<?0.05) in cyclists than in all other groups. In conclusion, an osteogenic effect was found only in triathletes, mainly at bone sites under high mechanical stress. Bone turnover differed in athletes compared with controls, suggesting that bone turnover may be sport-practice dependent. Despite some encouraging observations, it was not possible to show that changes in the bone remodelling process were sport-discipline dependent.  相似文献   

9.
Abstract

The aim of this study was to investigate the effects of a single bout of whole-body vibration (WBV) on running gait. The running kinematic of sixteen male marathon runners was assessed on a treadmill at iso-efficiency speed after 10 min of WBV and SHAM (i.e. no WBV) conditions. A high-speed camera (210 Hz) was used for the video analysis and heart rate (HR) was also monitored. The following parameters were investigated: step length (SL), flight time (FT), step frequency (SF), contact time (CT), HR and the internal work (WINT). Full-within one-way analysis of variance (ANOVA) of the randomised crossover design indicated that when compared to SHAM conditions, WBV decreased the SL and the FT by ~4% (< 0.0001) and ~7.2% (< 0.001), respectively, and increased the SF ~4% (< 0.0001) while the CT was not changed. This effect occurred during the first minute of running: the SL decreased ~3.5% (< 0.001) and SF increased ~3.3% (< 0.001). During the second minute the SL decreased ~1.2% (= 0.017) and the SF increased ~1.1% (= 0.02). From the third minute onwards, there was a return to the pre-vibration condition. The WINT was increased by ~4% (< 0.0001) during the WBV condition. Ten minutes of WBV produced a significant alteration of the running kinematics during the first minutes post exposure. These results provide insights on the effects of WBV on the central components controlling muscle function.  相似文献   

10.
This study compared the effects of six warm-up modalities on peak power output (PPO) during the high-pull exercise. Nine resistance-trained males completed six trials using different warm-ups: high-pull specific (HPS), cycle, whole body vibration (WBV), cycle+HPS, WBV+HPS and a control. Intramuscular temperature (Tm) was increased by 2°C using WBV or cycling. PPO, Tm and electromyography (EMG) were recorded during each trial. Two high-pulls were performed prior to and 3 min after participants completed the warm-up. The greatest increase in PPO occurred with HPS (232.8 ± 89.7 W, < 0.001); however, this was not different to combined warm-ups (cycle+HPS 158.6 ± 121.1 W; WBV+HPS 177.3 ± 93.3 W, = 1.00). These modalities increased PPO to a greater extent than those that did not involve HPS (all P < 0.05). HPS took the shortest time to complete, compared to the other conditions (P < 0.05). EMG did not differ from pre to post warm-up or between modalities in any of the muscles investigated. No change in Tm occurred in warm-ups that did not include cycling or WBV. These results suggest that a movement-specific warm-up improves performance more than temperature-related warm-ups. Therefore, mechanisms other than increased muscle temperature and activation may be important for improving short-term PPO.  相似文献   

11.
Abstract

This study aimed to investigate the effect of whole body vibration (WBV) training on the knee kinematics and neuromuscular control after single-legged drop landings. Surface electromyographic (EMG) activity of the rectus femoris and hamstring muscles and knee and ankle accelerometry signals were acquired from 42 healthy volunteers. Participants performed three pre-test landings and after a recovery period of three minutes, they completed one set of six bouts of WBV each of one minute duration (30 Hz – 4 mm), followed by a single-leg drop landing. After the WBV intervention no significant changes were observed in the kinematic outcomes measured, although the time to stabilise the lower-limb was significantly lower after the vibration training (F(8,41) = 6.55; P < 0.01). EMG analysis showed no significant differences in the amplitude of rectus femoris or hamstring muscles after WBV training, however, significant differences in EMG frequency of the rectus femoris were found before (F(8,41) = 7.595; P < 0.01) and after toe-down (F(8,41) = 4.440; P < 0.001). Finally, no significant changes were observed in knee or ankle acceleration after WBV. Results suggest that WBV can help to acutely enhance knee neuromuscular control, which may have clinical significance and help in the design of rehabilitation programmes.  相似文献   

12.
Male interscholastic swimmers (n = 8) completed a 4572 m training swim in 62 ±1.1 min (x ± s.e.) with terminal heart rate and blood lactate of 152 ± 6 beats min‐1 and 6.9±0.89 mM, respectively. Sweat rate (0.48±0.0951. h‐1) was lower than similar intensity cycling (1.5±0.13 1. h‐1) or running (1.1 ± 0.14 l.h‐1). Post‐swim serum urea N (11.6±0.71 mM) was elevated (P<0.05) vs pre‐swim (4.6±0.39 mM). Post‐swim urine volume (860±75 ml 24 h‐1) was reduced (P<0.07) and resulted in an elevated (P<0.05), but delayed (24–84 h), post‐exercise urea N excretion. Although the reduced urine and sweat production during the swim undoubtedly contributed to the elevated serum urea, there must be another explanation because together they could only account for 38% of the observed increase. On the basis of the magnitude of serum urea increase, it appears that the swim caused an increase in urea production (amino acid oxidation). The failure to observe larger increases in urinary urea during recovery indicates that either urea excretion following exercise continues for prolonged periods of time (>48 h) or another significant mode of nitrogen excretion exists.  相似文献   

13.
In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.  相似文献   

14.
Purpose: This study explored the effect of whole-body vibration (WBV) using accelerations of 2.56 g to 7.68 g on lower-body detraining. Methods: All participants (N = 20) were trained using a lower-body resistance-training program for 30 min twice per week from Week 0 to Week 6. At the end of the program, they were randomly assigned to a control group that performed no further training or a WBV group that performed a progressive static WBV program. Data for the 5-repetition-maximum (5RM) squat and extensors and flexors of the knee and ankle were collected at Weeks 0, 6, 8, 10, and 12 for all participants. Results: Two-way (condition vs. time) analysis of variance revealed that although the WBV group maintained strength in the 5RM from Week 6 through Week 8 and the control group had a lower 5RM in Week 8 from Week 6, no differences in the 5RM squat existed between the groups at Week 8. Two-way factorial multivariate analysis of variance revealed no differences between the groups at any of the time for torque of knee flexion, dorsiflexion, or plantar flexion. Conclusion: Static WBV of 2.56 g to 7.68 g did not attenuate detraining of the flexors and extensors of the knee and ankle.  相似文献   

15.
Abstract

To investigate the effects of acute whole body vibration (WBV) intervention on body balance, neuromuscular performance and perceived exertion two types of vibration platforms were compared: vertical platform (VP) and oscillating platform (OP). Forty-four healthy college students (35 men and nine women) were exposed on different days to two types of WBV platforms (VP and OP). Electromyography activity (EMG) of six muscle groups was recorded while standing in squat position on the vibrating platform during five 1-min sets. Balance, maximal voluntary isometric contraction (MVIC), and rating of perceived exertion (RPE) were recorded immediately after the WBV exposure. The OP protocol induced a significantly higher change in balance than VP protocol, as shown by variations in displacement area of the centre of pressure (+25.5% versus –5.5% for OP and VP, respectively). Moreover, RPE scores were significantly higher during OP than VP (+13.2%; P<0.05). No changes were observed concerning MVIC. WBV exposure induces changes in static body balance, these changes being larger when the vibratory stimulus is provided by an OP in comparison to a VP. Moreover, the perceptual response is higher with the OP. Aspects related to direction of vibration or amplitude could explain this acute effect.  相似文献   

16.
Abstract

This study investigated in older adults whether whole-body vibration (WBV) training results in significant increases of physical fitness measures without alterations in markers of inflammation. Sixteen volunteers completed a WBV programme 3 d.wk?1 during 9 weeks. The programme consisted of lower and upper-body unloaded static and dynamic exercises. Training improved significantly several tests which evaluate physical fitness, such as 30-s chair stand, arm curl or chair sit and reach test. There was a significant increase in maximal voluntary isometric contraction (MVIC) between pre- and post-training conditions. Muscle power values, reached at 20, 40 and 60% MVIC, were also significantly greater after training. However, mRNA or protein levels for C-reactive protein, interleukin-6, interleukin-1β, tumour necrosis factor-α and interleukin-10 did not significantly differ from basal values. Our data confirm the usefulness of WBV training for counteracting the loss of muscle strength associated with sarcopenia in older adults and show that WBV training could be a safe training method which induces no inflammatory effects.  相似文献   

17.
We examined the effects of antioxidant supplementation in association with progressive aerobic training on the bone metabolism of healthy elderly individuals. For 8 weeks, 13 participants (mean age 74 years) received vitamin C (500 mg) and vitamin E (100 mg) daily and participated in a supervised progressive aerobic training programme. After the 8 weeks, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations were increased significantly by 42.8% (P < 0.001) and 26.8% (P < 0.01) respectively, while parathyroid hormone concentration was decreased by 17.5% (p < 0.05). Of the bone markers, only bone alkaline phosphatase decreased, by 14.6% (P < 0.05). No variation was observed for ionized calcium, insulin-like growth factor-1 or insulin-like growth factor binding protein-3. Our findings suggest that 8 weeks of combined antioxidant supplementation and aerobic training modified vitamin D metabolism and parathyroid hormone concentration. These adaptations might counterbalance the unfavourable hormonal profile frequently observed in the elderly that predisposes them to accentuated age-related bone loss.  相似文献   

18.
The assessment of nutrition and activity in athletes requires accurate and precise methods. The aim of this study was to validate a protocol for parallel assessment of diet and exercise against doubly labelled water, 24-h urea excretion, and respiratory gas exchange. The participants were 14 male triathletes under normal training conditions. Energy intake and doubly labelled water were weakly associated with each other (r = 0.69, standard error of estimate [SEE] = 304 kcal x day(-1)). Protein intake was strongly correlated with 24-h urea (r = 0.89) but showed considerable individual variation (SEE = 0.34 g kg(-1) x day(-1)). Total energy expenditure based on recorded activities was highly correlated with doubly labelled water (r = 0.95, SEE = 195 kcal x day(-1)) but was proportionally biased. During running and cycling, estimated exercise energy expenditure was highly correlated with gas exchange (running: r = 0.89, SEE = 1.6 kcal x min(-1); cycling: r = 0.95, SEE = 1.4 kcal x min(-1)). High exercise energy expenditure was slightly underestimated during running. For nutrition data, variations appear too large for precise measurements in individual athletes, which is a common problem of dietary assessment methods. Despite the high correlations of total energy expenditure and exercise energy expenditure with reference methods, a correction for systematic errors is necessary for the valid estimation of energetic requirements in individual athletes.  相似文献   

19.
This study investigated (i) the prevalence of hypohydration and (ii) association between urinary indices of hydration status and confounding factors (e.g., urine protein content, water intake) in elite youth boxers during their weight-stable phase before competition. Sixteen national champion boxers (all male, 17 ± 1 y) were measured on 3 occasions (baseline, day 3, day 10), 30-day prior to competition. Body mass, total body water, urine specific gravity (USG), osmolality (UOSM) and total protein content (TPC) were evaluated to determine hydration status and fluid balance. Overall macronutrient and water intake were assessed using dietary records. Both UOSM and USG increased from day 3 to day 10 by 16% and 0.4% (P < 0.001), despite athletes being in their weight-stability period, and regardless of ad libitum fluid intake. Hypohydration was universally prevalent among all athletes on both test days with USG: 1.027 ± 0.003 g · mL?1 and UOSM: 1035 ± 108 mOsmol · kg?1. An inverse association between mean UOSM values and mean water intake was observed (R = ?0.52, P = 0.04), while TPC was not associated with any urinary dehydration markers (USG, P = 0.51; UOSM, P = 0.61). The present outcomes find that the most prevalent urinary dehydration markers used to classify hydration status in competition exhibit large variability, even during weight-stable periods.  相似文献   

20.
There is evidence from previous cross-sectional studies that high volumes of certain sports, including running, swimming and cycling, may have a negative impact on bone mineral density. The aim of the present study was to evaluate prospectively the effects of high athletic training in individuals who engage in high volumes of all three of these activities (triathletes). Bone mineral density for the total body, arms and legs was determined by dual-energy X-ray absorptiometry in 21 competitive triathletes (9 men, 12 women) at the beginning of the training season and 24 weeks later. Age, body mass index, calcium intake and training volume were also recorded to examine potential mediators of bone mineral density change. Men had greater bone mineral density at all sites than women. No significant changes were observed over the 24 weeks for either total body or leg bone mineral density. Bone mineral density in both arms increased by approximately 2% in men (P < 0.03), but no change was observed for women. Change in bone mineral density at all sites was unrelated to age, body mass index, calcium intake and training volume. The results suggest that adverse changes in bone mineral density do not occur over the course of 6 months of training in competitive triathletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号