首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
<正>几何最值问题背景丰富,形式灵活,往往很难找到突破口.如若析出问题背后的数学史模型,分析其变化特点,往往可以化难为易.初中阶段平面几何最值问题的解法,基本上能转化为以下三种类型:(1)利用两点之间线段最短求最短路径或线段的最小值;(2)利用垂线段最短求解;(3)利用三角形三边关系(三角形任意两边之和大于第三边,任意两边之差小于第三边)当三点共线时取得最值.而这三种解法背后便蕴含了丰富的数学史模型.  相似文献   

2.
“共线法”求线段和最值,即利用“两点之间,线段最短”定理来构建共线模型,由共线原理求线段和最值的一种思路.具体求解时需要关注问题中的动点及轨迹,利用“共线法”来确定最值情形.本文结合实例探究“共线法”求线段和最值.  相似文献   

3.
怎样走最近     
数学来源于实践,数学问题生活化、实际化是新课程的特点之一.数学新教育中有几处对"最短路径"的探究,既有现实性又充满趣味性以及对数学思维的挑战性. 应用的基本原理很简单:"两点之间线段最短",但具体问题中将实际问题转化为"两点之间的线段"这一数学模型的途径丰富又巧妙. 下面分平面和空间两种情况进行分析.  相似文献   

4.
怎样走最近     
数学来源于实践,数学问题生活化、实际化是新课程的特点之一.数学新教育中有几处对“最短路径”的探究,既有现实性又充满趣味性以及对数学思维的挑战性.应用的基本原理很简单:“两点之间线段最短”,但具体问题中将实际问题转化为“两点之间的线段”这一数学模型的途径丰富又巧妙.下面分平面和空间两种情况进行分析.1平面上的最近问题在同一平面中经常遇到需要确定几条线段和的最小值问题,解决这类问题的思路是:将线段和转化为两点之间的线段.例1如图1,某人牵着马从草地上A处走到河边饮水,然后回到草地上B处休息,怎样走最近?为什么?(本题同…  相似文献   

5.
<正>将军饮马问题是典型的两条线段和最短问题,记为"a+b型",常利用对称进行等量变换,将最短问题转化为"两点之间,线段最短"原理的简单应用问题.但其一些变式问题,譬如"a+kb(常数k>0)型"线段和最小值问题,对学生具有很大挑战性,如何突破学生思维障碍呢?通常需要进行一种新的变换,通过构造的方法转化、化归为简单情形,从而有效地寻找解题突破口,使  相似文献   

6.
《考试》2007,(Z2)
在高考试题中,经常涉及求最值问题,正确选择和建立求最值途径非常关键,下面谈一下常见的求最值途径。一、借助几何意义求最值在求—些路程或线段最值时,往往借助垂线段最短,两点间线段最短,把问题转化求解。  相似文献   

7.
解决几何最值问题的理论依据一般是几何中的一些公理和定理,如两点间线段最短公理、垂线段最短定理等.求解时要先画出最值位置的状态图,转化为求线段长度问题,也可以通过建模转化为方程、函数、不等式等问题,如转化为二次函数模型,利用顶点式来求最值,转化一次函数问题,通过不等式限定自变量的取值范  相似文献   

8.
在初中数学中,“两点之间,线段最短”(以下简称“线段公理”)是一个非常重要的知识点,在解决实际问题时,它的用途也非常广泛,尤其是在解决有关“最短”的问题时,通过运用化归的思想方法,效果更为显著.下面试举两例说明. 例1 如图1,在一条河的同侧有A、B两个村庄,要在河岸a上修码头M, 使AM+BM为最短,试确定M点的位置.  相似文献   

9.
针对课改下数学教学中存在的问题及对策,中考"最短问题"多以直线、角、三角形、特殊的平行四边形、梯形、圆、坐标轴、函数等载体出现.我们解题的对策是根据轴对称实现化"折"为"直",利用"两点之间线段最短"、"垂线段最短"解决.  相似文献   

10.
<正>线段最小值问题是各地中考的热点,这类问题主要利用"两点之间线段最短","垂线段最短"和"点与圆之间,点到点心线与圆的近交点的距离最短"三种原理来解决.虽然这类题计算量小,但构思巧妙,且涉及的知识面广,所以有些考生在遇到这类问题时容易陷入困境.下面举例说明如何利用对称、轨迹和转化策略来巧妙地解决线段最小值问题.一、对称策略对称策略是指通过作出一些关键点的对称点,把折线问题转化为直线问题,再根据"垂线段最短"等原理确定线段的最小值.  相似文献   

11.
<正>教学中发现学生在解决"线段最值"问题时,困难主要有两个方面:一是对解决这类问题常用的几种数学模型认识不充分,掌握不到位;二是这类问题一般是以动态形式呈现的,学生难以掌握运动中的数量关系而导致无法入手.本文主要谈谈如何利用数学模型求线段最值的问题.笔者归纳出最常用的三种数学模型:从"形"的角度构造"两点之间线段最短"和"垂线段最短"这两种几何模型;从"数"的角度建立函数模型来进行分析.现举例加以分析.  相似文献   

12.
理解轴对称,会利用轴对称的有关性质解决实际问题.能针实际问题转化为几何极值问题,建立几何模型解决问题.即实际问题→几何模型→几何极值问题→不等关系→两点之间线段最短.  相似文献   

13.
另类转化     
<正>转化是一种重要的解题策略,通过转化达到"化难为易"、"化繁为简"、"化未知为已知"的目的.例如:如图1,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(选自北师大版八年级数学上册P13例题)解决这类问题的策略是将空间的曲线问题转化为平面的线段问题,利用"两点之间,线段最短"及"勾股定理"  相似文献   

14.
<正>各地中考中常常见到这样一类问题:问题中一般含一个或多个动点,求某线段最值或求"PA+k·PB"的最值.很多学生对这类问题往往束手无策,究其原因,是因为学生在学习过程未能掌握此类问题的本质,并将问题与数学模型结合起来.解决线段最值问题关键在于如何从问题中提炼出有用信息,将复杂的线段最值问题转化为诸如"两点之间、点线之间、点圆之间"等距离最值问题,所以这类问题破题依据无外乎数学中的几个基本事实:(1)两点之间,线段最短;(2)垂线段最短;  相似文献   

15.
<正>在平面几何问题中,当某几何元素在给定条件变化时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题.这类问题通常可以运用几何性质和代数解法两种方法解决.几何性质中常用的定理(或公理)有"两点之间线段最短"和"垂线段最短";代数解法通常是利用二次函数的最值或判别式法.近年来出现了一类将阿氏圆和"两点之间线段最短"结合求最值问题,下面我们一起来领略阿氏圆在解决  相似文献   

16.
几何中最值问题的依据是:"两点之间,线段最短"、"垂线段最短".在解决最值问题时,通常利用轴对称、平移等变换作出最值位置,从而把已知问题转化为容易解决的问题.本文在课本(人教版八上数学课题学习最短路径问题)中"饮马问题"、"造桥选址问题"的基础上进行变式探究,与同行交流.几何模型一、基本图形1.条件:如图1,点A、B是直线l异侧的两定点.  相似文献   

17.
<正>线段最值,包括一条线段,两条线段和甚至多条线段和的最值,通常解决的思路是化成一条线段,利用"两点之间线段最短"或"垂线段最短"来解决,当然在加入圆相关概念之后,可用定理会更多.多条线段和的最值也被归纳为"胡不归+阿氏圆"模型,当然,核心依然是上述基本定理.题目如图1,在平面直角坐标系中,抛物线y=x2-2x-3与x轴交于点A,B(点A在点B左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.连接BD,点M是线段BD上一动点(点M不与端点B、D重合),过点M作MN⊥BD,  相似文献   

18.
<正>双动点线段是指线段的两个端点都在某个图形上运动的线段.由于线段的两个端点都在运动,因此增加了解决问题的难度.这类问题的解题策略是:消点——将双动点转化为单动点,然后利用"垂线段最短"确定单动点线段长的最小值,进而得到双动点线段长的最小值.下面举例说明.  相似文献   

19.
正"两点之间,线段最短"是学生在初中数学中学到的基本定理之一。也是人们在每天的生活中不断验证的事实。近几年,这个事实被广泛"演变"为"线段和的最值问题",频频出现在各省市的中考题和竞赛题中。这类试题考查的知识点主要是点的对称、平移、两点之间线段最短、三角形的三边关系等,考查的思想方法主要是方程与函数的思想,数形结合的思想,化归转化思想等。本文从教科书中溯源,对这类问题进行了探究。类型1特征条件:两个定点,直线上一个动点。  相似文献   

20.
<正>以抛物线为载体,求抛物线上(或对称轴)的一动点到两定点距离之和的最小值问题,是近年中考常见的题型.解决此类问题的关键是:将相关线段进行转换,最终利用"两点之间线段最短"或"垂线段最短"来解决问题.现举例说明如下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号