首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

2.
1.运用点到直线的距离例1(2009年陕西)如图1,在锐角三角形△ABC中,∠BAC=45°,AB=4槡2,∠BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.解延长BM交AC于点H,当BH⊥AC且MN⊥AB时BM+MN最小,此时由题意知∠BAD=∠CAD,AM=AM,∠AHM=∠ANM=90°,所以△AHM≌△ANM,所以MH=MN,BM+MN=BM+MH=BH.又由AB=槡4 2,∠BAC=45°得BH=4,即BM+MN的最小值为4.  相似文献   

3.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

4.
正1.运用点到直线的距离例1(2009年陕西)如图1,在锐角三角形△ABC中,∠BAC=45°,AB=4槡2,∠BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.解延长BM交AC于点H,当BH⊥AC且MN⊥AB时BM+MN最小,此时由题意知∠BAD=∠CAD,AM=AM,∠AHM=∠ANM=90°,所以△AHM≌△ANM,所以MH=MN,BM+MN=BM+MH=BH.又由AB=槡4 2,∠BAC=45°得BH=4,即BM+MN的最小值为4.  相似文献   

5.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

6.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

7.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

8.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

9.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

10.
<正>1试题呈现(深圳中考第15题)如图1,在△ABC中,AB=AC,tan∠B=3/4,点D为BC上一动点,联结AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE△AGE/S△ADG=_____2解法探究由题意知△ABD沿AD翻折得到△ADE,所以∠ABC=∠AED,因为AB=AC,所以∠ABC=∠ACB,所以∠ACB=∠AED。又因为∠AGE=∠DGC,所以△AGE∽△DGC。在下列解法中△AGE∽△DGC的结论不重复证明。  相似文献   

11.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

12.
证法 5 :如图 5 ,作AC的延长线CE ,则点C处有一周角 ,即∠BCE+∠DCE+∠BCD =36 0° .∵∠BCE =∠ 1+∠B ,∠DCE=∠ 2 +∠D ,∴ (∠ 1+∠B) +(∠ 2 +∠D) +∠BCD =36 0° ,即 ∠BAD +∠B+∠BCD+∠D =36 0° .证法 6 :如图 6 ,若延长BA、CD相交于点E ,则有∠B +∠C =∠ 1+∠ 2 ,∴∠BAD+∠B +∠C+∠CDA=(180°-∠ 1) +∠B +∠C+(180°-∠ 2 )=36 0°- (∠ 1+∠ 2 ) +(∠B+∠C)=36 0°- (∠ 1+∠ 2 ) +(∠ 1+∠ 2 )=36 0° .证法 7:如图 7,若CD∥AB时 ,过点D作DE∥AB交BC于点E ,则∠A =180° -∠ 1,∠B =∠ 2 ,∴…  相似文献   

13.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

14.
平行四边形是一种特殊的四边形,它具有很多独特的性质.在解答一些与线段有关的证明问题时,从构造平行四边形入手,常可化难为易.例1 如图1,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,BE=CF,EF交BC于D.试说明DE=DF. 解 过E作EG∥AC交BC于G,连结CE,FG,则∠EGB=图1∠ACB.因为AB=AC,所以∠ABC=∠ACB=∠EGB,所以EG=BE. 因为BE=CF,所以EG=CF.又EG∥CF,所以四边形EGFC为平行四边形.因此DE=DF.例2 如图2,△ABC中,D,E分别为AB,AC的中点.说明:DE∥BC.图2解 延长DE到F,使FE=DE,连结AF,CF,CD.因为…  相似文献   

15.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

16.
数学问题与解答   总被引:1,自引:0,他引:1  
551.如图1,圆内接四边形ABCD中,BC=CD,E、F分别为AB、AD上的点,线段EF交AC于G.若EF∥BD,求证:∠GBD=∠FCO,∠GDB=∠ECB.  相似文献   

17.
在1997年安徽省初中数学竞赛中,有这样一道题:例1如图1,在△ABC中,∠BAC=90°AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.分析:过C作CM⊥AC交AF延长线于  相似文献   

18.
在△ ABC中 ,∠ C=90°,CD⊥ AB于 D,AM是∠ BAC的平分线 ,交 CD于 E,交 BC于 M,过E作 EF∥ AB交 BC于 F。求证 :CM=BF。证法一 :(运用三角形知识 )证明 :过 M作 MN⊥ AB于点 N。∵∠ 1=∠ 2 ,易证△ ACM≌△ ANM,∴CM=MN。  ( 1)又 CD⊥ ABMN⊥ AB CD∥ MN, ∠ 3=∠ 5∠ 4 =∠ 5 ∠ 3=∠ 4 CE=CM。  ( 2 )由 ( 1)、( 2 )得 CE=MN。在 Rt△ EFC和 Rt△ NBM中 ,EF∥ AB ∠ B=∠ CFE,∠ CEF=∠ MNB,CE=MN Rt△ EFC≌ Rt△ NBM,∴ CF=BM,∴ CM=BF。  证法二 :(运用四边形知识 )证明 :过 M…  相似文献   

19.
第 42届IMO第五题是 :在△ABC中 ,AP平分∠BAC ,交BC于P ,BQ平分∠ABC ,交CA于Q .已知∠BAC =60° ,且AB +BP =AQ +QB .问△ABC各角的度数的可能值是多少 ?先求解 ,再给出更一般的结论 .图 1解 :如图 1,在AB的延长线上取点D ,使得BD =BP ;在AQ的延长线上取点E ,使得QE =QB .连结PD、PE ,则AD =AB +BP =AQ +QB =AE ,且 △ADP∽△AEP .故∠AEP =∠ADP =12 ∠ABC =∠QBC ,即 ∠QEP =∠QBP .下面的证明中要用到如下的引理 .引理 等腰△ABC中 ,AB =AC ,平面内一点P满足∠ABP =∠ACP ,则点P在BC的…  相似文献   

20.
在几何解题中时常需要辅助线.在含有三角形中线条件的习题中倍长中线是一种重要的添加技巧,它可以将许多较为分散的条件相对集中,从而架设已知与未知的桥梁.现就倍长中线的方法举几例说明.例1如图1,△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.简析虽然AC、AB在同一个三角形中,但无法证得结论.想到BD=DC,即AD是中线,可倍长中线,即延长AD至E,使DE=AD,再连结BE,则易证得△BDE≌△CDA.于是∠E=∠CAD,BE=AC.而AD⊥AC,则∠E=90°.在Rt△AEB中,∠BAD=ABEDC图1CADEB图230°,所以BE=12AB,故AC=12AB.例2如图2,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号