首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation examined 10th‐grade biology students' decisions to enroll in elective science courses, and explored certain attitudinal perceptions of students that may be related to such decisions. The student science perceptions were focused on student and classroom attitudes in the context of differing learning cycle classrooms (high paradigmatic/high inquiry, and low paradigmatic/low inquiry). The study also examined possible differences in enrollment decisions/intentions and attitudinal perceptions among males and females in these course contexts. The specific purposes were to: (a) explore possible differences in students' decisions, and in male and female students' decisions to enroll in elective science courses in high versus low paradigmatic learning cycle classrooms; (b) describe patterns and examine possible differences in male and female students' attitudinal perceptions of science in the two course contexts; (c) investigate possible differences in students' science perceptions according to their decisions to enroll in elective science courses, participation in high versus low paradigmatic learning cycle classrooms, and the interaction between these two variables; and (d) examine students' explanations of their decisions to enroll or not enroll in elective science courses. Questionnaire and observation data were collected from 119 students in the classrooms of six learning cycle biology teachers. Results indicated that in classrooms where teachers most closely adhered to the ideal learning cycle, students had more positive attitudes than those in classrooms where teachers deviated from the ideal model. Significantly more females in high paradigmatic learning cycle classrooms planned to continue taking science course work compared with females in low paradigmatic learning cycle classrooms. Male students in low paradigmatic learning cycle classrooms had more negative perceptions of science compared with males in high paradigmatic classrooms, and in some cases, with all female students. It appears that using the model as it was originally designed may lead to more positive attitudes and persistence in science among students. Implications include the need for science educators to help teachers gain more thorough understanding of the learning cycle and its theoretical underpinnings so they may better implement this procedure in classroom teaching. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 1029–1062, 2001  相似文献   

2.
The purpose of this study was to explore relationships among school students' (N = 189) meaningful learning orientation, reasoning ability and acquisition of meaningful understandings of genetics topics, and ability to solve genetics problems. This research first obtained measures of students' meaningful learning orientation (meaningful and rote) and reasoning ability (preformal and formal). Students were tested before and after laboratory-based learning cycle genetics instruction using a multiple choice assessment format and an open-ended assessment format (mental model). The assessment instruments were designed to measure students' interrelated understandings of genetics and their ability to solve and interpret problems using Punnett square diagrams. Regression analyses were conducted to examine the predictive influence of meaningful learning orientation, reasoning ability, and the interaction of these variables on students' performance on the different tests. Meaningful learning orientation best predicted students' understanding of genetics interrelationships, whereas reasoning ability best predicted their achievement in solving genetics problems. The interaction of meaningful learning orientation and reasoning ability did not significantly predict students' genetics understanding or problem solving. Meaningful learning orientation best predicted students' performance on all except one of the open-ended test questions. Examination of students' mental model explanations of meiosis, Punnett square diagrams, and relationships between meiosis and the use of Punnett square diagrams revealed unique patterns in students' understandings of these topics. This research provides information for educators on students' acquisition of meaningful understandings of genetics. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

4.
This study examined the relationships that exist between high school science teachers' understanding of the Piagetian developmental model of intelligence, its inherent teaching procedure—the learning cycle—and classroom teaching practices. The teachers observed in this study had expressed dissatisfaction with the teaching methods they used, and, subsequently, attended a National Science Foundation sponsored in-service program designed to examine laboratory-centered science curricula and the educational and scientific theories upon which the curricula were based. The teachers who exhibited a sound understanding of the Piagetian model of intelligence and the learning cycle were more likely to effectively implement learning cycle curricula. They were able to successfully integrate their students' laboratory experiences with class discussions to construct science concepts. The teachers who exhibited misunderstandings of the Piagetian developmental model of intelligence and the learning cycle also engaged their students in laboratory activities, but these activities were weakly related to learning cycles. For example, the data gathered by their students were typically not used in class discussions to construct science concepts. Therefore, these teachers apparently did not discern the necessity of using the data and experiences from laboratory activities as the impetus for science concept attainment. Additional results comparing degrees of understanding, teaching behaviors and questioning strategies are discussed.  相似文献   

5.
This article contains the results of how a selected group of Finnish upper secondary students understand Lutheranism. The data consisted of 63 students' responses to a writing task together with complementary interviews of 11 students. The outcomes of phenomenographic analysis of variation in the students' understanding of Lutheranism are presented in five hierarchically ordered categories. The implications for religious education are discussed in terms of what teachers could learn from differences in students' understandings of the subject matter in order to enhance their learning of it.  相似文献   

6.
Learning-by-explaining (to fictitious others) has been shown to be an effective instructional method to support students' generative learning. In this study, we investigated differential effects of the modality of explaining (written versus oral) on students' quality of explanations and learning. Forty-eight students worked on a hypertext about combustion engines. Afterwards, they were asked to explain the learning content, either orally or in writing. Findings indicated that providing written explanations was more effective than providing oral explanations in supporting students to organize the content of the explanations. The higher levels of organization yielded higher levels of students' conceptual knowledge. In contrast, generating oral explanations, relative to written explanations, triggered students' elaborative processes to a more pronounced extent, which was more beneficial to attaining transferable knowledge. Thus, we conclude that the modality of explaining plays a critical role in learning-by-explaining inasmuch as different modes differentially support student learning.  相似文献   

7.
To address the low literacy achievement of minority students, the sociocultural movement of the New Literacy Studies (NLS) encourages us to expand on current understandings of literacy. Instead of thinking of literacy as a neutral set of skills transferable from one setting to another, NLS researchers encourage us to contextualize literacy within individuals’ social and cultural realms. In this view, there are multiple literacies. As a literacy teacher of students who are deaf, I have witnessed students struggling with school-based literacy learning. As I began to examine what I was doing within the classroom, I realized that my assumptions about literacy instruction were the main source of students' struggles. In this study I explore how I used the theoretical perspective of the NLS to expand my understanding of literacy. The findings suggest that, in order to base literacy instruction on students' resources, teachers need to learn to negotiate conflicting educational Discourses on reading and writing, to create a space within the classroom for students to bring in their literacy practices, and to recognize and preserve students' agency and identity in their learning. Findings also indicate the vital role of writing in deaf students' learning of Icelandic.  相似文献   

8.
The use of inquiry‐based laboratory in college science classes is on the rise. This study investigated how five nonmajor biology students learned from an inquiry‐based laboratory experience. Using interpretive data analysis, the five students' conceptual ecologies, learning beliefs, and science epistemologies were explored. Findings indicated that students with constructivist learning beliefs tended to add more meaningful conceptual understandings during inquiry labs than students with positivist learning beliefs. All students improved their understanding of experiment in biology. Implications for the teaching of biology labs are discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 986–1024, 2003  相似文献   

9.
Absences from school present a major obstacle to students' gaining understandings of concepts developed in class. Moreover, teachers' finding effective ways for students to make up missed work is a continual problem, especially for laboratory-based science classes. In an exploratory study, we investigated an alternative procedure for making up missed class work: viewing a quasi-interactive videotaped presentation of missed portions of a learning cycle in chemistry. Two treatment groups were involved. One group of students completed data sheets while watching a videotape, then wrote answers to questions posed by the videotaped instructor. This procedure simulated make-up work. A second group of students participated in a conventional learning cycle: exploration, conceptual invention and concept application. Results demonstrate that teachers can videotape investigations to conveniently and effectively use as make-up assignments for a chemistry learning cycle.  相似文献   

10.
Teaching science as explanation is fundamental to reform efforts but is challenging for teachers—especially new elementary teachers, for whom the complexities of teaching are compounded by high demands and little classroom experience. Despite these challenges, few studies have characterized the knowledge, beliefs, and instructional practices that support or hinder teachers from engaging their students in building explanations. To address this gap, this study describes the understandings, purposes, goals, practices, and struggles of one third-year elementary teacher with regard to fostering students' explanation construction. Analyses showed that the teacher had multiple understandings of scientific explanations, believed that fostering students' explanations was important for both teachers and students, and enacted instructional practices that provided opportunities for students to develop explanations. However, she did not consistently take up explanation as a goal in her practice, in part because she did not see explanation construction as a strategy for facilitating the development of students' content knowledge or as an educational goal in its own right. These findings inform the field's understanding of teacher knowledge and practice with regard to one crucial scientific practice and have implications for research on teachers and inquiry-oriented science teaching, science teacher education, and curriculum materials development.  相似文献   

11.

This study looks at the effects of a science-technology-society (STS) in-service programme, designed to change teachers' awareness and practice of STS/constructivist approaches, while also focusing on students' understandings and changes of perceptions of the constructivist learning environments. The STS in-service programme was developed to achieve the following features: teacher-oriented, teaching in a social context, emphasis on a 'constructivist' approach, developing STS units and their use in classrooms. A total of 20 middle and high school science teachers participated in the in-service programme in 1998; and three of the middle school teachers were selected to gain information from their implementation of a Reactions of Acids and Bases unit in their respective classrooms. The Science Education Reform Inventory was administered to all the teachers at both the opening and the end of the programme. One hundred twenty-five students of the three teachers experienced about 16 class hours of lessons comprising the new STS unit. At the beginning and the end of the unit, they completed the Constructivist Learning Environment Survey. In order to assess student understanding, teachers administered the creativity test before and after the unit; and the concept acquisition test and the application test after the unit. Students obtained at average 48% of the 35 key concepts and 6.6 additional non-key concepts after the unit was finished. Students made more relevant and creative responses on unfamiliar situations on the post-test than on the pre-test. Through several tasks including a short essay, students showed their abilities to apply various concepts related to acids and bases to daily life situation. It was found that the STS programme improved the teachers' awareness and practices of the science education reforms characterized by STS and constructivism. The middle school science teachers could develop STS units which they implemented in their own classrooms. They could work together in developing units and reflecting on their teachings through video recordings of science classes. They were willing to assess various aspects of learning such as creativity, application and concept acquisition. Students perceived that the classroom environments improved in terms of personal relevance of contents, scientific uncertainty and student participation. The results showed that the STS in-service programme was effective and could be implemented successfully with Korean science teachers.  相似文献   

12.
The purposes of this study are as follows: (a) to investigate the relationship between high school students' learning approaches, prior knowledge and attitudes toward chemistry, and their performance on a misunderstandings test; and (b) to describe and analyze the differences between the responses of students with different learning approaches on the same test. Forty-nine suburban high school students enrolled in two sections of New York State Regents Chemistry classes participated in the study. The students' performance on a misunderstandings pretest and the students' learning approach both accounted for a statistically significant proportion of the variance on their performance on the misunderstandings posttest. Additionally, the results showed that the relatively meaningful learners performed significantly better than the relatively rote learners on the misunderstandings posttest.  相似文献   

13.
The understanding of concepts in social science was investigated by interviewing students studying two foundation courses in Social Science at the Open University. The investigation was carried out using the research paradigm of phenomenography (Marton, 1981) where the content of learning is seen as a quality rather than as a quantity. There were two aims of the research.
  1. To discover the different understandings that students hold of particular important concepts in Social Science.
  2. To use the method as a method of formative evaluation to influence the production of new course materials.
This paper concentrates on describing the results in terms of two evaluation strategies: Formative evaluation, where the students' understandings of the concept before the course were used to influence the teaching strategy of the remade course. Summative evaluation, where the students' answers before and after the course were compared to evaluate their learning on the course.  相似文献   

14.
Classrooms are complex environments in which curriculum, students, and teachers interact. In recent years a number of studies have investigated the effect of teachers' epistemologies on the classroom environment, yet little is known about students' epistemologies and how these interact with those of teachers. The purpose of this study was to document students' epistemologies and their concurrent views about knowing and learning. Using a written essay, short-answer responses to statements, a preferred classroom environment inventory, and interviews, students' views on scientific knowledge and their own knowing and learning were collected from 42 students in three sections of an introductory physics course. Our rather broad, qualitative inquiry provides a dynamic view of students' understanding of knowing and learning in high school physics. Our analyses reveal a spectrum of epistemological commitments commensurable with positions from objectivism to relativism, most of them with experientialist coloring. Even within individuals, these commitments could be at once commensurable and incommensurable with the same epistemological position. We also find rather significant inter- and intra-individual differences with respect to the consequences of a specific epistemological stance to learning, the learning strategies employed, and the learning environment preferred. Students' views on knowing and learning in physics are presented in the form of an emergent theory. The findings are discussed in terms of their application to classroom environments.  相似文献   

15.
This study explored factors predicting the extent to which high school students (N = 140) acquired meaningful understanding of the biological topics of meiosis, the Punnett-square method, and the relationships between these topics. This study (a) examined mental modeling as a technique for measuring students' meaningful understanding of the topics, (b) measured students' predisposed, generalized tendency to learn meaningfully (meaningful learning orientation), (c) determined the extent to which students' meaningful learning orientation predicted meaningful understanding beyond that predicted by aptitude and achievement motivation, (d) experimentally tested two instructional treatments (relationships presented to students, relationships generated by students), (e) explored the relationships of meaningful learning orientation, prior knowledge, instructional treatment, and all interactions of these variables in predicting meaningful understanding. The results of correlations and multiple regressions indicated that meaningful learning orientation contributed to students' attainment of meaningful understanding independent of aptitude and achievement motivation. Meaningful learning orientation and prior knowledge interacted in unique ways for each topic to predict students' attainment of meaningful understanding. Instructional treatment had relatively little relationship to students' acquisition of meaningful understanding, except for learners midrange between meaningful and rote. These findings imply that a meaningful learning approach among students may be important, perhaps as much or more than aptitude and achievement motivation, for their acquisition of interrelated, meaningful understandings of science.  相似文献   

16.
Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the—mostly unconscious—deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.  相似文献   

17.
This study attempts to understand how achievement gap Discourse might be present in preservice teachers' (PSTs) Discourse about students they found challenging to teach. Using a Discourse analytic approach, the project considers: How do PSTs describe challenging students in their written reflections? Do PSTs draw on students' multiple identities? Findings reveal PSTs are taking up a Discourse prevalent in today's educational environment in which students, particularly ethnically and linguistically diverse students, are discussed in terms of inadequacy. PSTs typically describe students in terms of a single label, rather than as having multiple identities. Implications include that PSTs might enter teaching with a limited view and incomplete understanding of students and that even a teacher-education program aimed at pushing PSTs to question their assumptions about students might be reifying a systemwide Discourse that identifies students based on labels—sometimes deficit-oriented labels—rather than fuller understandings of students.  相似文献   

18.
Past studies have explored the role of student science notebooks in supporting students' developing science understandings. Yet scant research has investigated science notebook use with students who are learning science in a language they are working to master. To explore how student science notebook use is co-constructed in interaction among students and teachers, this study examined plurilingual students' interactions with open-ended science notebooks during an inquiry science unit on condensation and evaporation. Grounded in theoretical views of the notebook as a semiotic social space, multimodal interaction analysis facilitated examination of the ways students drew upon the space afforded by the notebook as they constructed explanations of their understandings. Cross-group comparison of three focal groups led to multiple assertions regarding the use of science notebooks with plurilingual students. First, the notebook supported student-determined paths of resemiotization as students employed multiple communicative resources to express science understandings. Second, notebooks provided spaces for students to draw upon diverse language resources and as a bridge in time across multiple inquiry sessions. Third, representations in notebooks were leveraged by both students and teachers to access and deepen conceptual conversations. Lastly, students' interactions over time revealed multiple epistemological orientations in students' use of the notebook space. These findings point to the benefits of open-ended science notebooks use with plurilingual students, and a consideration of the ways they are used in interaction in science instruction.  相似文献   

19.
Forty-seven fifth grade students (40 group-tested and 7 individually interviewed) read a text describing plate tectonics. At four points they drew diagrams of the spatial, causal, and dynamic processes inside the earth. These diagrams along with students' corresponding explanations, think-aloud protocols (for those individually interviewed), and answers to inference questions were analysed in order to characterize students' models of the interior of the earth, and models of its causal and dynamic processes. Types and characteristics of models, and reasoning associated with them are presented. Additionally, data from two exemplary students are presented as case studies. One student has considerable misunderstandings regarding both her understanding of the spatial layout of the interior of the earth and its causal mechanisms. The second student is more typical in terms of his initial models, but makes large gains in revising his understanding about the causal and dynamic processes inside the earth. In both cases, data are used to infer how each student used their diagrams as artefacts for externalizing knowledge, inference making, and model-revision.  相似文献   

20.
The 2 episodes featured in this issue provide a rich setting in which to investigate not only the influence but also the confluence of students' and teacher's understandings on the quality of whole class discussions. In particular, I focus on the communication between the students and myself as the teacher in the classroom. This unique perspective allows me to offer insights into the teacher's decision-making process and how those decisions influenced the opportunities for learning. As part of the analysis I consider the role of tools in both supporting and constraining communication in the classroom. The analysis therefore makes explicit the tensions in teaching by highlighting the importance of the teacher's understanding of the students' offered explanations and justifications and the mathematics that is to be taught.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号