首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT

This longitudinal study explored the effects of a Cooperation-driven Socioscientific Issue (CDSSI) intervention on junior high school students' perceptions of critical thinking (CT) and self-regulation (SR) in Taiwan. Forty-nine grade 7 students were randomly selected as an experimental group (EG) to attend a 3-semester 72-hour intervention; while another 49 grade 7 students from the same school were randomly selected as the comparison group (CG). All participants completed a 4-wave student questionnaire to assess their perceptions of CT and SR. In addition, 8 target students from the EG with the lowest scores on either CT or SR were purposefully recruited for weekly observation. These target students and their teachers were interviewed one month after the intervention in each semester. Analyses of covariance and paired-wise t-tests revealed that the EG students' perceptions of CT and SR in learning science were improved during the study and were significantly better than their counterparts' at the end of the study. Systematic interview and classroom observation results were consistent with the quantitative findings. This study adds empirical evidence and provides insights into how CDSSI can be integrated into planning and implementing effective pedagogical strategies aimed at increasing students' perceptions of CT and SR in learning science.  相似文献   

2.
Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple ‘activity mania.’ This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.  相似文献   

3.
Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.  相似文献   

4.
The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families’ children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families’ children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.  相似文献   

5.
Using latent growth models, we explored: (a) The effect of middle school students' (n = 189) pre-intervention science self-efficacy and science interest on their initial interest in an Ecosystems Multi-User Virtual Environment (EcoMUVE) and the rate of change in their interest in EcoMUVE; and (b) the mediating effect of students' initial interest in EcoMUVE and rate of change in interest on students' post-intervention science self-efficacy and interest in science. Results showed that: (1) students' pre-intervention self-efficacy for science had an effect both on students' triggered situational interest for EcoMUVE and on students' maintained situational interest for EcoMUVE; (2) both triggering and maintaining situational interest in EcoMUVE were important in developing students' science self-efficacy. In fact, maintained situational interest was the stronger predictor; and (3) maintained situational interest for EcoMUVE translated into individual interest for the science content. Results support and extend social cognitive theory as well as models of interest development.  相似文献   

6.
Building on common assumptions in theories of interest and mathematics education, this experimental study examined the effect of context personalization based on individual preferences, group personalization, and example choice with preselected popular examples on middle school students' situational interest and performance in mathematics. Participants (N = 713) learned a principle in probability calculus in one of four instructional conditions. Individual interest and perceived competence were examined as moderators on triggered and maintained situational interest, perceived value, task effort, and performance. Results showed that example choice triggered situational interest in the learning activity and that context personalization influenced perceived value and effort, contingent on students' perceived competence and individual interest in mathematics. We discuss results in relation to previous findings on interest-based interventions and the theoretical and practical implications.  相似文献   

7.
There has been extensive investigation into factors affecting digital technology integration in learning and teaching, but the complexity of integration continues to elude understanding. Thus, questions about how digital technologies can be best used to support learning persist. This paper argues that methods designed to address complex systems are needed to understand the interplay between teaching, learning and digital technologies. Starting with a developing system model of teachers' technology integration, this study revises the model to include factors of students' experience using digital technologies and beliefs about learning. The revised model is then used to demonstrate possible effects of student experiences in a technologically integrated group learning task. Analysis draws on data from a large-scale Australian study of technology innovation (N = 7406). Data mining techniques are used to identify patterns of students' technology use and perceptions of group work. Findings inform revision of the model to include factors of students' experience and learning and their effects on teachers' practice. Implications for learning design and students' learning experiences are explored.  相似文献   

8.
Editorial     
The first article in this issue raises some fascinating issues that relate to my own background in research into student learning and experience of courses in conventional higher education. Richardson, Long and Woodley have administered the Academic Engagement Form', used widely in colleges in the USA, and the 'Course Experience Questionnaire', used widely in universities in Australia, to distance learning students. John Richardson and various colleagues have previously shown that these questionnaires, separately, work as well in distance learning contexts as they do in conventional contexts: that is, they identify the same factors as components of students' experience, and the same factors relating to overall perceptions of quality of experience, as in conventional contexts. Of the many findings reported in the study reported in this issue of Open Learning, two stand out for me. First, academic engagement is shown to play a key role in students' perceptions of academic quality: engaged students perceive their course to be of higher quality. This does not tell us if students who are happy with their courses become more engaged or if those who are engaged become happier with their courses, however, merely that they are related. 'Engagement' here encompasses both social and academic engagement as defined in Tinto's model of student retention. Second, students' overall perceptions of academic quality are mediated by their perceptions of their tutors. The authors conclude: '... the attitudes and behaviours of tutors are crucial to students' perceptions of the academic quality of courses in distance education'. In conventional contexts the item on the Course Experience Questionnaire that relates most closely to student performance concerns the quality of teacher feedback, not teaching, and this is easy to understand in a distance context. The methodology of this paper (relying on factor analysis of questionnaires and multivariate analysis of the relationship between questionnaire scale scores and background variables such as age, gender, educational qualifications, workload and hearing status) may be relatively unfamiliar to readers of Open Learning. What is perhaps more familiar is that such an analysis adds to similar conclusions about the centrality of the tutorial role in ODL students' learning from very different kinds of study (such as of the relationship between tutorial attendance and student performance). There is a growing body of evidence that the same variables are involved in student perceptions of courses and of academic quality in distance learning contexts as in conventional contexts.  相似文献   

9.
10.
This investigation examined 10th‐grade biology students' decisions to enroll in elective science courses, and explored certain attitudinal perceptions of students that may be related to such decisions. The student science perceptions were focused on student and classroom attitudes in the context of differing learning cycle classrooms (high paradigmatic/high inquiry, and low paradigmatic/low inquiry). The study also examined possible differences in enrollment decisions/intentions and attitudinal perceptions among males and females in these course contexts. The specific purposes were to: (a) explore possible differences in students' decisions, and in male and female students' decisions to enroll in elective science courses in high versus low paradigmatic learning cycle classrooms; (b) describe patterns and examine possible differences in male and female students' attitudinal perceptions of science in the two course contexts; (c) investigate possible differences in students' science perceptions according to their decisions to enroll in elective science courses, participation in high versus low paradigmatic learning cycle classrooms, and the interaction between these two variables; and (d) examine students' explanations of their decisions to enroll or not enroll in elective science courses. Questionnaire and observation data were collected from 119 students in the classrooms of six learning cycle biology teachers. Results indicated that in classrooms where teachers most closely adhered to the ideal learning cycle, students had more positive attitudes than those in classrooms where teachers deviated from the ideal model. Significantly more females in high paradigmatic learning cycle classrooms planned to continue taking science course work compared with females in low paradigmatic learning cycle classrooms. Male students in low paradigmatic learning cycle classrooms had more negative perceptions of science compared with males in high paradigmatic classrooms, and in some cases, with all female students. It appears that using the model as it was originally designed may lead to more positive attitudes and persistence in science among students. Implications include the need for science educators to help teachers gain more thorough understanding of the learning cycle and its theoretical underpinnings so they may better implement this procedure in classroom teaching. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 1029–1062, 2001  相似文献   

11.
Advances in technology have led to continuous innovation in teaching and learning methods. For instance, the use of tablet PCs (TPCs) in classroom instruction has been shown to be effective in attracting and motivating students' interest and increasing their desire to participate in learning activities. In this paper, we used a TPCs game – an iPad app called Motion Math: Hungry Fish – to help young students learn to theoretically understand and practically implement the mathematical concepts of addition and subtraction. Based on findings from a pilot study, we categorized the game's 18 levels of difficulty into “challenging” (experimental group) and “matching” (control group) games. We aimed to investigate whether challenging games were more able than matching games to improve the students' motivation, flow experience, self-efficacy for technology, self-efficacy for science, feelings about the TPC game, and satisfaction with the learning approach. The findings showed that the students in the experimental group achieved better flow experience, learning performance, and satisfaction.  相似文献   

12.
The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio‐scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom‐based argumentation on high school students' argumentation skills, informal reasoning, and conceptual understanding of genetics. The research was conducted as a case study in one school with an embedded quasi‐experimental design with two Grade 10 classes (n = 46) forming the argumentation group and two Grade 10 classes (n = 46) forming the comparison group. The teacher of the argumentation group participated in professional learning and explicitly taught argumentation skills to the students in his classes during one, 50‐minute lesson and involved them in whole‐class argumentation about socio‐scientific issues in a further two lessons. Data were generated through a detailed, written pre‐ and post‐instruction student survey. The findings showed that the argumentation group, but not the comparison group, improved significantly in the complexity and quality of their arguments and gave more explanations showing rational informal reasoning. Both groups improved significantly in their genetics understanding, but the improvement of the argumentation group was significantly better than the comparison group. The importance of the findings are that after only a short intervention of three lessons, improvements in the structure and complexity of students' arguments, the degree of rational informal reasoning, and students' conceptual understanding of science can occur. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 952–977, 2010  相似文献   

13.
Student philanthropy is a teaching strategy that “provides students with the opportunity to study social problems and nonprofit organizations, and then make decisions about investing funds in them.” This represents the first study of student philanthropy in the criminal justice education literature and the first quasi-experimental study of student philanthropy in the higher-education literature. Specifically, it examines the impact of student philanthropy on students' beliefs, interest, learning, and intended behavior by analyzing pretest and posttest data for students who participated in a philanthropy experience (experimental group), relative to students who did not participate (comparison group). Key findings include: those who participated in the student philanthropy project were significantly more likely to be aware of organizations in their community, and change scores support the differences between the experimental and comparison groups regarding social problem awareness.  相似文献   

14.
Knowledge diversity describes group members' differences in terms of prior knowledge in a domain. The purpose of the study was to investigate whether knowledge diversity would impact students' engagement in small-group learning in a science classroom. A total of 45 seventh-grade students were recruited to participate in the study in which two experimental conditions were compared: low-prior-knowledge groups (all low-prior-knowledge students) versus mixed knowledge groups (low-prior-knowledge students with one knowledgeable student). Participates were randomly assigned into six low-prior-knowledge groups (24 individuals in total) and five mixed knowledge groups (21 individuals in total). Engagement, as well as group performance, was measured. The results of a series of independent-samples t test demonstrated that the mixed knowledge groups had significantly higher behavioral, emotional, and social engagement and better group performance than did the low-prior-knowledge groups. This implies that even having one knowledgeable student could enhance students' engagement in a science classroom.  相似文献   

15.
This study examined the relationship between students' out‐of‐school experiences and various factors associated with science learning. Participants were 1,014 students from two urban high schools (secondary schools). They completed a survey questionnaire and science assessment describing their science learning experiences across contexts and science understanding. Using multilevel statistical modelling, accounting for the multilevel structure of the data with students (Level 1) assigned to teachers (Level 2), the results indicated that controlling for student and classroom factors, students' ability to make connections between in‐school and out‐of‐school science experiences was associated with positive learning outcomes such as achievement, interest in science, careers in science, self‐efficacy, perseverance, and effort in learning science. Teacher practice connecting to students' out‐of‐school experiences was negatively associated with student achievement but has no association with other outcome measures. The mixed results found in this study alert us to issues and opportunities concerning the integration of students' out‐of‐school experiences to classroom instruction, and ultimately improving our understanding of science learning across contexts.  相似文献   

16.
This study investigated causes of school failure among elementary school students in Brunei Darussalam. Fifty-two specialist mathematics and science teachers were involved in the investigation using a questionnaire. The student factor identified to be the most important was related to students' poor command of the English language. Lack of interest in learning was another important influencing factor in students' failure. Parental factors perceived to be the most important were lack of supervision of their children's activities at home and reluctance to make school visits to see teachers about their children's academic progress. The influence of teacher factors on educational failure was perceived to be less important.  相似文献   

17.
The goal of this study was to investigate whether integrating a website into chemistry teaching influences 10th‐grade students' perceptions of the classroom learning environment, their attitudes regarding the relevance of chemistry, and their understanding of the concept of chemical bonding. Two groups participated in this study: an experimental group and a comparison group. The main study was conducted during the academic year 2005. The teachers in the experimental group were asked to implement four relevant activities from the website that was developed, all dealing with the concept of chemical bonding. Quantitative tools of the study included: A Chemistry Classroom Web‐Based Learning Environment Inventory to assess students' perceptions regarding the relevance of chemistry to their life and attitude towards chemistry studies, a feedback questionnaire that examined the students' response after performing the website activities, and an achievement test that assessed their knowledge and understanding of the concept of chemical bonding. We found that the experimental group outperformed the comparison group significantly in most of the research categories. This led us to conclude that the web‐based learning environment has potential to enhance the comprehension of chemistry concepts, students' attitudes and interests and to increase students' awareness regarding the relevant aspects of chemistry to daily life.  相似文献   

18.
19.
Ultrasonography is a noninvasive imaging modality, and modern ultrasound machines are portable, inexpensive (relative to other imaging modalities), and user friendly. The aim of this study was to explore student perceptions of the use of ultrasound to teach “living anatomy”. A module utilizing transthoracic echocardiography was developed and presented to undergraduate medical, science, and dental students at a time they were learning cardiac anatomy as part of their curriculum. Relevant cardiac anatomy was explored on a student volunteer and images were projected in real‐time to all students via an AV projection system. Students were asked to complete a questionnaire about the learning experience and were given the opportunity to provide open feedback. The students' evaluations of this learning experience were very positive. They agreed or strongly agreed that it was an effective way to teach anatomy (90% medical; 77% dental; 100% science) and that it was incorporated in a way that promoted reinforcement of the lecture material (83% medical; 76% dental; 100% science). They agreed or strongly agreed with statements that the experience was innovative (93% medical; 92% dental; 100% science) and stimulated interest in the subject matter (86% medical; 75% dental; 96% science), and that they would like to see more modules, exploring other anatomical sites, incorporated into the curricula (83% medical; 72% dental; 100% science). We believe that ultrasound could be a useful tool, in conjunction with traditional teaching methods, to reinforce the learning of anatomy of a variety of different undergraduate student groups. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

20.
Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience. This study, conducted with high school students and their teachers, explored the impact of students' perception of ownership and virtual presence during a remote investigation using a scanning electron microscope. Students were randomly assigned to one of two treatment groups: students able to select their own insect to use during the remote investigation, and students that did not select their own insects to view during the remote investigation. The results of this study showed that students in the experimental group who had choice and ownership of their insect reported being more present (less distracted) during the remote investigation than students in the control group, whereas students in the control group reported controlling the technology was easier than the experimental group. Students indicated the remote investigation was very real; however, the teachers of these students were less likely to describe the investigation as being real. The results of this study have practical implications for designing remote learning environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号