首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
论大学课堂教学的有效性   总被引:3,自引:0,他引:3  
课堂教学是大学教育最基本的组织活动形式,提高课堂教学质量是提高大学教育教学质量的关键。文章认为,要实现有效的课堂教学,则必须采用有效的教学模式、进行有效的课程重构和实现有效的交互过程。文章结合西方经济学课程教学实践,从多方面进行了探讨。  相似文献   

2.
This study examined the relationships that exist between high school science teachers' understanding of the Piagetian developmental model of intelligence, its inherent teaching procedure—the learning cycle—and classroom teaching practices. The teachers observed in this study had expressed dissatisfaction with the teaching methods they used, and, subsequently, attended a National Science Foundation sponsored in-service program designed to examine laboratory-centered science curricula and the educational and scientific theories upon which the curricula were based. The teachers who exhibited a sound understanding of the Piagetian model of intelligence and the learning cycle were more likely to effectively implement learning cycle curricula. They were able to successfully integrate their students' laboratory experiences with class discussions to construct science concepts. The teachers who exhibited misunderstandings of the Piagetian developmental model of intelligence and the learning cycle also engaged their students in laboratory activities, but these activities were weakly related to learning cycles. For example, the data gathered by their students were typically not used in class discussions to construct science concepts. Therefore, these teachers apparently did not discern the necessity of using the data and experiences from laboratory activities as the impetus for science concept attainment. Additional results comparing degrees of understanding, teaching behaviors and questioning strategies are discussed.  相似文献   

3.
The recent next generation science standards in the United States have emphasized learning about complex systems as a core feature of science learning. Over the past 15 years, a number of educational tools and theories have been investigated to help students learn about complex systems; but surprisingly, little research has been devoted to identifying the supports that teachers need to teach about complex systems in the classroom. In this paper, we aim to address this gap in the literature. We describe a 2-year professional development study in which we gathered data on teachers’ abilities and perceptions regarding the delivery of computer-supported complex systems curricula. We present results across the 2 years of the project and demonstrate the need for particular instructional supports to improve implementation efforts, including providing differentiated opportunities to build expertise and addressing teacher beliefs about whether computational-model construction belongs in the science classroom. Results from students’ classroom experiences and learning over the 2 years are offered to further illustrate the impact of these instructional supports.  相似文献   

4.
5.
Understanding the nature of science (NOS) has long been a desired outcome of science education, despite ongoing disagreements about the content, structure, and focus of NOS expectations. Addressing the concern that teachers likely focus only on student learning expectations appearing in standards documents, this study examines the current state of NOS in science education standards documents from nine diverse countries to determine the overt NOS learning expectations that appeared, NOS statements provided near those learning expectations, but not identified as learning outcomes (such as chart column headers or footnotes), and NOS statements found in ancillary text (e.g., introductory material or appendices). Findings indicate that NOS ideas rarely occur as expectations for student learning and are far more commonly found in ancillary material. Moreover, consensus was not apparent in the overt learning outcomes for students. Given the well-documented poor state of NOS instruction and the consistent lack of NOS appearing in published curriculum materials, the NOS standards appearing in nearly all documents analyzed are unlikely to provide sufficient conceptual or pedagogical support for NOS to be accurately interpreted or translated into meaningful experiences for students.  相似文献   

6.
In reform-based science curricula, students’ discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants’ othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.  相似文献   

7.
The nature of science (NOS) has become a central goal of science education in many countries. This study refers to a developmental work research program, in which four fifth-grade elementary in-service teachers participated. It aimed to improve their understandings of NOS and their abilities to teach it effectively to their students. The 1-year-long, 2012–2013, program consisted of a series of activities to support teachers to develop their pedagogical content knowledge of NOS. In order to accomplish our goal, we enabled teacher-researchers to analyze their own discourse practices and to trace evidence of effective NOS teaching. Many studies indicate the importance of examining teachers’ discussions about science in the classroom, since it is teachers’ understanding of NOS reflected in these discussions that will have a vital impact on students’ learning. Our proposal is based on the assumption that reflecting on the ways people form meanings enables us to examine and seek alternative ways to communicate aspects of NOS during science lessons. The analysis of discourse data, which has been carried out with the teacher-researchers’ active participation, indicated that initially only a few aspects of NOS were implicitly incorporated in teacher-researchers’ instruction. As the program evolved, all teacher-researchers presented more informed views on targeted NOS aspects. On the whole, our discourse-focused professional development program with its participatory, explicit, and reflective character indicated the importance of involving teacher-researchers in analyzing their own talk. It is this involvement that results in obtaining a valuable awareness of aspects concerning pedagogical content knowledge of NOS teaching.  相似文献   

8.
This article explores the nature of a continuing mismatch between curriculum reform rhetoric in science education and actual classroom practice. Lack of philosophical consensus about the nature of science (NOS); lack of appropriate curriculum guidance, classroom materials and pedagogical content knowledge for NOS teaching; teachers’ personal theories of learning; and the realities of classroom constraints are all implicated as interacting factors that contribute to the mismatch. Because curriculum policy is political, with pressure brought to bear by many interest groups, it is suggested that the science teaching community cannot adequately address the issues raised in the absence of wider community debate and support.  相似文献   

9.
The aim of this study was to assess how the different aspects of nature of science (NOS) were represented in Finnish and Swedish upper secondary school chemistry textbooks. The dimensions of NOS were analyzed from five popular chemistry textbook series. The study provides a quantitative method for analysis of representations of NOS in chemistry textbooks informed by domain-specific research on the philosophy of chemistry and chemical education. The selection of sections analyzed was based on the four themes of scientific literacy: knowledge of science, investigate nature of science, science as a way of thinking, and interaction of science, technology and society. For the second round of analysis the theme of science as a way of thinking was chosen for a closer inspection. The units of analysis in this theme were analyzed using seven domain specific dimensions of NOS: tentative, empirical, model-based, inferential, technological products, instrumentation, and social and societal dimensions. Based on the inter-rater agreement, the procedure and frameworks of analysis presented in this study was a reliable way of assessing the emphasis given to the domain specific aspects of NOS. All textbooks have little emphasis on the theme science as a way of thinking on a whole. In line with the differences of curricula, Swedish textbooks emphasize the tentative dimension of NOS more than Finnish textbooks. To provide teachers with a sufficiently wide variety of examples to discuss the different dimensions of NOS changes to the national core curricula are needed. Although changing the emphasis of the curricula would be the most obvious way to affect the emphasis of the textbooks, other efforts such as pre- and in-service courses for developing teachers understanding of NOS and pedagogic approaches for NOS instruction to their classroom practice might also be needed.  相似文献   

10.
The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both software such as office applications, and hardware such as robots and sensors). Through uses of these applications, information and communications technologies (ICT) have focused on activities to support subject and topic learning (across wide age and subject ranges). Very recently, discussions for including computers in the curriculum have shifted to a much greater focus on computing and CS, more concerned with uses of and development of programming, together with fundamental principles of problem-solving and creativity. This paper takes a policy analysis approach; it considers evidence of current implementation of CSE in school curricula, the six main arguments for wider-scale introduction of the subject, the implications for researchers, schools, teachers and learners, the state of current discussions in a range of countries, and evidence of outcomes of CSE in compulsory curricula. The paper concludes by raising key questions for the future from a policy analysis perspective.  相似文献   

11.
Particular social aspects of the nature of science (NOS), such as economics of, and entrepreneurship in science, are understudied in science education research. It is not surprising then that the practical applications, such as lesson resources and teaching materials, are scarce. The key aims of this article are to (a) synthesize perspectives from the literature on economics of science (EOS), entrepreneurship, NOS, and science education in order to have a better understanding of how science works in society and (b) illustrate how such a synthesis can be incorporated in the practice of science education. The main objectives of this article are to (1) argue for the role and inclusion of EOS and entrepreneurship in NOS and re-define entrepreneurship in the NOS context; (2) explore the issues emerging in the “financial systems” of the Family Resemblance Approach (FRA) to NOS and propose the inclusion of contemporary aspects of science, such as EOS and entrepreneurship, into NOS; (3) conceptualize NOS, EOS, and entrepreneurship in a conceptual framework to explain how science works in the society; and (4) transform the theoretical knowledge of how science operates in society into practical applications for science teaching and learning. The conceptual framework that we propose illustrates the links between State, Academia, Market and Industry (the SAMI cycle framework). We suggest practical lesson activities to clarify how the theoretical discussions on the SAMI cycle framework can be useful and relevant for classroom practice. In this article, science refers to physics, chemistry, and biology. However, we also recommend an application of this framework to other sciences to reveal their social-institutional side.  相似文献   

12.
13.
Educational environment influences students’ learning attitudes, and the classroom conveys the educational philosophy. The traditional college classroom design is based on the educational space that first appeared in medieval universities. Since then classrooms have not changed except in their size. In an attempt to develop a different perspective of educational environment, a new design of classroom, the active learning classroom (ALC), was established at SoongSil University in Korea. Two questionnaire surveys were conducted for diagnosing the educational effects of students’ learning in the ALC and comparing the results with those obtained regarding the traditional classroom. The result proved the existence of a ‘golden zone’ and a ‘shadow zone’ in the traditional classroom, which discriminate students’ learning experiences depending on seating positions. On the contrary, the ALC did not produce such positional discrimination. Students perceived the ALC environment as more inspirational, especially in regards to active class participation. Students with more emphasis on academic achievement showed greater tendency to share information and to create new ideas in the ALC. However, in the traditional classroom setting, only students with high GPAs were more motivated to learn while the gap in learning attitudes was offset in the ALC setting. In-depth discussions about research findings were undertaken and four suggestions were provided in support of school administrators and relevant institutional personnel, faculty members, and researchers for future utilization of the ALC.  相似文献   

14.
We present an inquiry‐based, aquatic science professional development (PD) for upper‐elementary, middle, and high school teachers and examine changes in student outcomes in light of participating teachers’ characteristics and the grade band of the students. Our study lends support to the assertion that inquiry‐ and content‐focused PD, paired with classroom implementation, can effectively improve student learning. Our findings indicate that students improved in their nature of science (NOS) and aquatic science content knowledge and that these changes depended in some ways on the participating teachers’ characteristics and adherence to the program. The students’ improvements were amplified when their teachers adhered more closely to the PD activities during their classroom implementation. The teachers’ previous science PD experience and pre‐PD understanding of inquiry‐based teaching also explained some of the variability in student growth. In both NOS and content, students of teachers with less prior science‐PD experience benefited more. Grade band also explained variation in student outcomes through interactions with teacher‐characteristic variables. In high school, students of teachers with lower pre‐PD inquiry knowledge appeared to learn more about NOS. Our results suggest that inquiry and content training through PD may minimize disparities in teaching due to inexperience and lack of expertise. Our study also demonstrates the value of PD that teaches a flexible approach to inquiry and focuses on underrepresented, interdisciplinary content areas, like aquatic science. © 2017 Wiley Periodicals, Inc. J Res Sci Teach 54:1219–1245, 2017  相似文献   

15.
This study investigated the effects of a multi-pronged approach of increasing the nature of science (NOS) understandings of high school science students. The participants consist of 63 high school students: 31 in the intervention group and 32 in the control group. Explicit/reflective NOS instruction was imbedded within authentic inquiry experiences and supported by online discussions. The students in the intervention group were prompted to engage in various discussions focusing on essential tenets of NOS in an online environment that assured student confidentiality. NOS views were assessed through multiple data sources including pre- and post-intervention questionnaires as well as students’ responses to online discussion prompts. Results show that the instructional intervention used in this study which combined explicit/reflective NOS instruction with intense inquiry exposure along with ample reflective opportunities in an anonymous online discussion format led to positive learning gains in participants’ understanding the NOS aspects assessed. Implications for enhancing data collection with high school students and for promising professional development opportunities for science educators are discussed.  相似文献   

16.
17.
This review explores Michelle Hollingsworth Koomen’s “Inclusive science education: Learning from Wizard,” a case study of a middle school student with learning exceptionalities in a mainstream science classroom. The strength of Koomen’s work lies in her elucidation of the ways in which normative science instruction fails to adequately support Wizard’s learning. His classroom experiences position him, if unintentionally, as deficient and incapable, which in turn serves to undermine his ability to fully engage in science or to capitalize on his strengths as a learner in the service of developing disciplinary literacy. I extend this conversation by arguing for a broader view of scientific literacy and the need for a more relational pedagogy in classrooms that supports meaningful and productive engagement in science learning and fosters positive identification with science.  相似文献   

18.
Having the learning and retention of science content and skills as a goal of scientific literacy, it is significant to study the issue of retention as it relates to teaching and learning about nature of science (NOS). Then, the purpose of this study was to investigate the development of NOS understandings of students, and the retention of these understandings four months after being acquired through explicit reflective instruction in relation to two contexts. Participants were 24 tenth-grade students at a private high school in a city in the Middle East. Explicit NOS instruction was addressed within a six-week unit about genetic engineering. Three NOS aspects were integrated and dispersed across the unit. A questionnaire, together with semi-structured interviews, was administered as pre-, post-, and delayed post-test to assess the retention of participants’ NOS understandings. The questionnaire had two open-ended scenarios addressing controversial socioscientific issues about genetically modified food and water fluoridation. Results showed that most students improved their naïve understandings of NOS in relation to the two contexts following the six-week unit with the explicit NOS instruction. However, these newly acquired NOS understandings were not retained by all students four months after instruction. Many of the students reverted back to their earlier naïve understandings. Conclusions about the factors facilitating the process of retention as the orientation to meaningful learning and the prolonged exposure to the domain were discussed in relation to practical implications in the classroom.  相似文献   

19.
20.
Abstract

Examining how teachers structure the activities in a unit and how they facilitate classroom discussion is important to understand how innovative technology-rich curricula work in the context of classroom instruction. This study compared 2 enactments of an inquiry curriculum, then examined students' learning outcomes in classes taught by 2 teachers. The quantitative data show that there were significant differences in the learning outcomes of students in classes of the 2 teachers. This study then examined classroom enactments by the 2 teachers to understand the differences in the learning outcomes. This research specifically focused on how teacher-led discussions (a) helped connect the activities within a curriculum unit and (b) enabled deeper conceptual understanding by helping students make connections between science concepts and principles. This study examined the role that teacher facilitation played in helping students focus on the relations between the various activities in the unit and the concepts that they were learning. The results point to important differences in the 2 enactments, helping to understand better what strategies might enable a deeper conceptual understanding of the science content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号