首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we examine middle school students?? understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called Global Warming: Virtual Earth. In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw conclusions about how individual variables effect changes in the Earth??s temperature. They also carry out inquiry activities to make connections between scientific processes, the socio-scientific issues, and ideas presented in the media. Results show that participating in the unit increases students?? understanding of the science. We discuss how students integrate their ideas about global climate change as a result of using virtual experiments that allow them to explore meaningful complexities of the climate system.  相似文献   

2.
The aim of this study was to explore a group of prospective primary teachers’ conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers’ ideas were elicited using a pre- and post-test and delayed post-test survey consisting of ten two-tier questions of which an explanatory part was integral. Individual interviews were conducted with six prospective teachers at the end of the implementation of the unit using four questions. Test scores were analyzed quantitatively and qualitatively. Post-instructional interviews were analyzed qualitatively. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences between pre- and post- and delayed post-test (p < 0.05). A qualitative analysis of the prospective teachers’ explanations in the two-tier questions revealed changes in their ideas overtime. Both quantitative and qualitative analyses suggest that the teaching activities promoted students’ conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching activities based on 5E model enabled students to retain their new conceptual understanding.  相似文献   

3.
Learning-by-explaining (to fictitious others) has been shown to be an effective instructional method to support students' generative learning. In this study, we investigated differential effects of the modality of explaining (written versus oral) on students' quality of explanations and learning. Forty-eight students worked on a hypertext about combustion engines. Afterwards, they were asked to explain the learning content, either orally or in writing. Findings indicated that providing written explanations was more effective than providing oral explanations in supporting students to organize the content of the explanations. The higher levels of organization yielded higher levels of students' conceptual knowledge. In contrast, generating oral explanations, relative to written explanations, triggered students' elaborative processes to a more pronounced extent, which was more beneficial to attaining transferable knowledge. Thus, we conclude that the modality of explaining plays a critical role in learning-by-explaining inasmuch as different modes differentially support student learning.  相似文献   

4.
The results of two experiments demonstrate that preservice teachers made biased school-placement recommendations depending on student's ethnicity, which on average penalized students from an ethnic minority. Moreover, additional information that was supposed to disconfirm ethnic stereotypes (religious affiliation in Experiment 1, number of missed school days in Experiment 2) led to more high-track recommendations for low-achieving minority students and to fewer high-track recommendations for high-achieving minority students. Conversely, stereotype-disconfirming information exerted little or no influence on the recommendations for high-achieving native students but worsened recommendations for low-achieving students. The results were interpreted as being based either on subtyping (predominantly for minority Turkish students) or subgrouping (predominantly for majority German students) of ethnic stereotypes.  相似文献   

5.
A study on the effect of a structured problem‐solving strategy on problem‐solving skills and conceptual understanding of physics was undertaken with 189 students in 16 disadvantaged South African schools. This paper focuses on the development of conceptual understanding. New instruments, namely a solutions map and a conceptual index, are introduced to assess conceptual understanding demonstrated in students’ written solutions to examination problems. The process of the development of conceptual understanding is then explored within the framework of Greeno’s model of scientific problem‐solving and reasoning. It was found that students who had been exposed to the structured problem‐solving strategy demonstrated better conceptual understanding of physics and tended to adopt a conceptual approach to problem‐solving.  相似文献   

6.
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students’ understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high school participated in the study. The classes were randomly assigned as the experimental and control group. The control group (N?=?35) was taught by traditional instruction while the experimental group (N?=?37) was taught cooperative learning based on conceptual change approach instruction. Chemical Bonding Concept Test (CBCT) was used as pre- and post-test to define students’ understanding of chemical bonding concepts. After treatment, students’ interviews were conducted to observe more information about their responses. Moreover, students from experimental groups were interviewed to obtain information about students’ perceptions on cooperative work experiences. The results from ANCOVA showed that cooperative learning based on conceptual change approach instruction led to better acquisition of scientific conceptions related to chemical bonding concepts than traditional instruction. Interview results demonstrated that the students in the experimental group had better understanding and fewer misconceptions in chemical bonding concepts than those in the control group. Moreover, interviews about treatment indicated that this treatment helped students’ learning and increased their learning motivation and their social skills.  相似文献   

7.
8.
9.
Students can have great difficulty reading scientific texts and trying to cope with the professor in the classroom. Part of the reason for students’ difficulties is that for a student taking a science gateway course the language, ontology and epistemology of science are akin to a foreign culture. There is thus an analogy between such a student and an anthropologist spending time among a native group in some remote part of the globe. This brings us naturally to the subject of hermeneutics. It is through language that we attempt to understand an alien culture. The hermeneutical circle involves the interplay between our construct of the unfamiliar with our own outlook that deepens with each pass. It can be argued that for novice students to acquire a full understanding of scientific texts, they also need to pursue a recurrent construction of their comprehension of scientific concepts. In this paper it is shown how an activity, reflective-writing, can enhance students’ understanding of concepts in their textbook by getting students to approach text in the manner of a hermeneutical circle. This is illustrated using studies made at three post-secondary institutions.  相似文献   

10.
Many studies into learners’ ideas in science have reported that aspects of learners’ thinking can be represented in terms of entities described in such terms as alternative conceptions or conceptual frameworks, which are considered to describe relatively stable aspects of conceptual knowledge that are represented in the learner’s memory and accessed in certain contexts. Other researchers have suggested that learners’ ideas elicited in research are often better understood as labile constructions formed in response to probes and generated from more elementary conceptual resources (e.g. phenomenological primitives or ‘p‐prims’). This ‘knowledge‐in‐pieces perspective’ (largely developed from studies of student thinking about physics topics), and the ‘alternative conceptions perspective’, suggests different pedagogic approaches. The present paper discusses issues raised by this area of work. Firstly, a model of cognition is considered within which the ‘knowledge‐in‐pieces’ and ‘alternative conceptions’ perspectives co‐exist. Secondly, this model is explored in terms of whether such a synthesis could offer fruitful insights by considering some candidate p‐prims from chemistry education. Finally, areas for developing testable predictions are outlined, to show how such a model can be a ‘refutable variant’ of a progressive research programme in learning science.  相似文献   

11.
A study is presented that explores how students’ knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students’ knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students’ conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.  相似文献   

12.
This study investigated the effect of metaconceptual teaching interventions on students’ understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students’ reactions to metaconceptual teaching interventions. The participants (45 high school students in the USA) were enrolled in one of the two physics classes instructed by the same science teacher. In the experimental group, students’ engagement in metaconceptual knowledge and processes was facilitated through various instructional activities, including poster drawing, journal writing, group debate, concept mapping, and class and group discussions. These activities were intended to facilitate students’ engagement in (a) becoming aware of their existing and past conceptions, associated beliefs, everyday experiences, and contextual differences, (b) monitoring their understanding of the new conception, the changes in ideas, and the consistency between existing and new conceptions, and (c) evaluating the relative ability of competing conceptions to explain a physical phenomenon. In the comparison group, the same content knowledge was explained by the teacher along with the use of laboratory experiments, demonstrations, and quantitative problem solving. Students’ reactions to the designed instructional activities indicated that metaconceptual teaching interventions were successful in facilitating students’ engagement in several types of metaconceptual functioning. The results showed that students in the experimental group had significantly better conceptual understanding than their counterparts in the comparison group and this positive impact remained after a period of 9 weeks.  相似文献   

13.
Although researchers in higher education propose alternatives to traditional approaches to assessment, traditional methods are commonly used in college or university science courses. The purpose of this study was to explore the feasibility and validity of Prospective Science Teachers’ (PSTs) concept maps as authentic assessment tools in a student-centred approach to describe the changes in the conceptual understanding of the PSTs in general chemistry laboratory investigations. After the PSTs (n = 47) decided on important issues, such as who would assess their concept maps and what scoring strategy and criteria would be used, they practiced assessing their own and peers’ concept maps during the first five laboratory investigations. They subsequently constructed and assessed pre- and post-laboratory concept maps in a student-centred approach consisting of self, peer, and instructor assessments for the five remaining laboratory investigations. The results of the study showed using pre- and post-laboratory concept maps as authentic assessment tools in a student-centred approach was valid and reliable for describing the conceptual understanding of the PSTs in a university general chemistry laboratory course. The results of individual interviews indicated most PSTs had positive views of their assessment practices in the laboratory course. This study also provides pedagogical implications for the training of science teachers.  相似文献   

14.
Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students’ understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students’ understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher’s reflection journal. Pre-test–post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students’ texts provided further evidence of the students’ ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers’ approaches to these aspects of instruction around chemical bonding.  相似文献   

15.
Like their students, teachers may hold a variety of naïve conceptions that have been hypothesized to limit their ability to support students’ learning. This study examines whether changes in elementary students’ conceptions are related to their teachers’ content knowledge, attitudes, and understanding of conceptual change. The study takes place in the context of the adoption of a new unit on seasonal change in which students build and use sundials to observe seasonal differences in the apparent motion of the Sun across the sky. A mixed-method approach is used. Data sources include pre- and post-tests for students and teacher interviews and questionnaires. Results indicate that changes in students’ conceptions may be related to their teachers’ knowledge of the content, attitudes toward science, and understanding of conceptual change. One teacher had low attitude toward science and limited knowledge of conceptual change. After instruction, her students’ responses became less accurate but more homogeneous than before instruction. The other teacher had high attitude and moderate knowledge of conceptual change. Her students showed gains from pre- to post-test, including responses that were more scientifically accurate than the teachers’ initial answers.  相似文献   

16.
This study explores the spontaneous explanatory models children construct, critique, and revise in the context of tasks in which children need to predict, observe, and explain phenomena involving magnetism. It further investigates what conceptual resources students use, and in what ways they use them, to construct explanatory models, and the obstacles preventing them from constructing a useful explanatory model. Our findings indicate that several of the children were able to construct explanatory models. However, of the six children interviewed multiple times (three third‐graders and three sixth‐graders), only one was consistently able to critique and revise her models to arrive at a consistent, coherent, and sophisticated explanatory model. Connecting intuitive knowledge and abstract knowledge was important in her construction of a coherent and sophisticated explanatory model. Students who relied only on intuitive knowledge constructed tentative and non‐sophisticated explanatory models. Students who relied only on verbal‐symbolic knowledge at an abstract level without connection with their intuition also did not construct coherent and sophisticated models. These results indicate that instruction should help students to become meta‐conceptually aware and connect their verbal‐symbolic knowledge and intuition in order to construct explanatory models to make sense of abstract scientific knowledge.  相似文献   

17.
Journal of Science Education and Technology - Recent science education reforms, as described in the Framework for K-12 Science Education (NRC, 2012), call for three-dimensional learning that...  相似文献   

18.
The present study aimed to evaluate whether a chemistry laboratory course called “Laboratory Experiments in Science Education” based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers’ conceptual understanding. Data were collected from five pre-service chemistry teachers at a university in Ankara by means of a concept test and semi-structured interviews. Results showed that pre-service teachers had some alternative conceptions about chemistry topics. Moreover, using constructivist instruction accompanied with concept maps as an instructional tool was effective to promote conceptual understanding. Participants thought that concept maps were useful especially in recognizing the relation between different chemistry concepts.  相似文献   

19.
The greenhouse effect and the effects of the ozone layer have been in the media and public focus for more than two decades. During the same period, Norwegian compulsory schools have had four national curricula. The two last‐mentioned prescribe explicitly the two topics. Media and public discourse might have been sources of information causing informal learning among pupils. The point of departure for this questionnaire‐based examination of the development of pupils’ knowledge about the greenhouse effect and the effects of the ozone layer from 1989 to 2005 is the changing curricula and formal and informal learning. In 2005 the trends seem to be that more pupils confuse the greenhouse effect with the effects of the ozone layer. At the same time, specific knowledge about the greenhouse effect is improving. This article will discuss some possible causes for these trends, and give some recommendations for teaching the topics in accordance with the last national curriculum implemented in 2006.  相似文献   

20.
This paper presents a transformative modeling framework that guides the development of assessment to measure students’ deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating multiple explanatory models, and (3) connecting scientific models to concrete experiences. We carried out a 2-phase exploratory study that helped further develop and refine the framework. In the first phase, we developed 3 items on sinking and floating and pilot tested them with 18 undergraduate students. Analysis of student responses revealed various student misconceptions and the different connections students made among science ideas. Based on the findings, we revised the assessment, modified the instruction, and collected data from another cohort of 26 students. The second cohort of students showed significant improvement of understanding of sinking and floating after instruction. Implications and limitations of how our assessment framework can be used to improve students’ conceptual understanding in science are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号