首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study investigated the relationship of high school students' understandings about nature of science (NOS) aspects and their argumentation skills in relation to two controversial socioscientific issues. The study was conducted in five schools selected from different geographical areas in Beirut, Lebanon. Participants were 219 grade 11 students. Students in all the schools were administered a survey that consisted of two scenarios that addressed the controversial socioscientific issues about genetically modified food and water fluoridation. The two scenarios were followed by questions relating to argumentation and NOS. The study used a mixed methods approach where quantitative and qualitative measures were employed. Analysis involved participants' views of the target NOS aspects (subjective, tentative, and empirical) and their argumentation components (argument, counterargument, and rebuttal). The Pearson analyses showed strong correlations between the counterargument, compared to argument and rebuttal, and the three NOS aspects. Further, the chi‐square analyses showed significant differences in participants' argumentation skills and NOS understandings between the two scenarios. Qualitative data from questionnaires and interviews further confirmed these findings. Two central implications for the teaching of NOS and argumentation skills were discussed in terms of highlighting the role of counterarguments and considering contextual factors that involve issue exposure and familiarity, prior content knowledge, and personal relevance. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 489–514, 2012  相似文献   

2.
3.
4.
Current research indicates that student engagement in scientific argumentation can foster a better understanding of the concepts and the processes of science. Yet opportunities for students to participate in authentic argumentation inside the science classroom are rare. There also is little known about science teachers' understandings of argumentation, their ability to participate in this complex practice, or their views about using argumentation as part of the teaching and learning of science. In this study, the researchers used a cognitive appraisal interview to examine how 30 secondary science teachers evaluate alternative explanations, generate an argument to support a specific explanation, and investigate their views about engaging students in argumentation. The analysis of the teachers' comments and actions during the interview indicates that these teachers relied primarily on their prior content knowledge to evaluate the validity of an explanation rather than using available data. Although some of the teachers included data and reasoning in their arguments, most of the teachers crafted an argument that simply expanded on a chosen explanation but provided no real support for it. The teachers also mentioned multiple barriers to the integration of argumentation into the teaching and learning of science, primarily related to their perceptions of students' ability levels, even though all of these teachers viewed argumentation as a way to help students understand science. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1122–1148, 2012  相似文献   

5.
The study's purpose was to evaluate the quality of argumentations presented by students in relation to local socioscientific issues (SSIs). The participants, 36 seventh-grade students from state schools, were divided into three learning groups—outdoor group, newspaper group, and presentation group. Five local environment-related SSIs were selected: an artificial lake, chicken coops, leather tanneries, base stations, and hydroelectric power plants (HPPs). Different data sources were provided to each group pertaining to their SSIs. The outdoor group learned through field trips, the newspaper group acquired information through newspapers, and the presentation group learned via presentations. Each group gathered data from their unique learning sources, which then formed the basis of their arguments. After a pilot study, each group experienced the same argumentation practice within smaller groups. The recorded discussions were transcribed, and the qualities of 582 argumentation episodes chronicled over a period of 10 weeks were evaluated using an analytical assessment tool. It emerged that the quality of argumentations of each group varied by the data sources and the contexts of the SSIs. While the newspaper group displayed the best performance in 4 out of 5 issues, the outdoor group had the lowest performance overall. In terms of generating high-quality argumentations about the artificial lake, chicken coops, and base stations, the newspaper group ranked top, followed by the presentation group, and then the outdoor group. HPPs proved to be the most challenging context for students across all groups. The study sums up with discussions of the differences between the quality of argumentations of the various groups and the implications of the study's conclusions.  相似文献   

6.
天生万物 余得为人:论陶渊明的生命意识   总被引:1,自引:0,他引:1  
陶渊明以一生的行为在为生命的意义作注.他感觉出仕是对生命的奴役,短短的仕宦经历充满了生命的挣扎.他把躬耕劳作看作维持自然生命的必须,是真正实现人类的自然回归.他关注自然生命终究消亡的结果,这构成其心理的巨大阴影.而他的及时行乐,同样体现出恬淡纯真的生命意趣.  相似文献   

7.
8.
Argumentation and scientific discourse are essential aspects of science education and inquiry in the 21st century. Student groups often struggle to enact these critical science skills, particularly with challenging content or tasks. Social regulation of learning research addresses the ways groups attempt to navigate such struggles by collectively planning, monitoring, controlling, and reflecting upon their learning in collaborative settings. Such regulation and argumentation can also elicit socioemotional responses and interactions. However, little is known regarding how regulation processes and socioemotional interactions manifest among students involved in small-group discourse about scientific phenomena. As such, in this qualitative study, we explored social regulation of learning, scientific argumentation discourse, and socioemotional interactions in the discussions of two groups of high school physics students (n = 7, n = 6). We found key qualitative distinctions between the two groups, including how they enacted planning activities, their emphasis on challenging other’s ideas versus building shared understanding, and how socioemotional interactions drove discourse. Commonalities across groups included how regulation initiation related to discourse, as well as how the difficulty of the content hindered, and teacher support augmented, the enactment of social regulation. Finally, we found overlapping regulation and discourse codes that provide a foundation for future work.  相似文献   

9.
In a teaching experiment 16 face-to-face and 11 e-mailFinnish university students studied academic debatingin an argumentation course. The 19 students of thecontrol group did not engage in the course. The courseinvolved two lectures, exercises with argumentativetexts, and face-to-face or e-mail seminar discussionsbased on these texts. Free debate, role play,problem-solving and panel discussion were the devicesused in organizing the course. The level of thestudents' argumentation skills were measured in apretest before the course and in a post-test after it.The results were compared between and within thegroups. The results indicated that during the e-mailstudies the students learned to identify and chooserelevant grounds, while the face-to-face studentsimproved in putting forward counterargumentation. Thecontrol group did not improve in these skills. Thestudy suggests that argumentation skills can bepromoted by short-term e-mail and face-to-faceteaching, and that practising argumentation indifferent learning environments develops differentkinds of argumentation skills.  相似文献   

10.
11.
12.
There exists a general consensus in the science education literature around the goal of enhancing learners' views of nature of science (NOS). An extensive body of research in the field has highlighted the effectiveness of explicit NOS instructional approaches in improving learners' NOS views. Emerging research has suggested that engaging learners in argumentation may aid in the development of their NOS views, although this claim lacks empirical support. This study assessed the influence of a science content course incorporating explicit NOS and argumentation instruction on five preservice primary teachers' views of NOS using multiple sources of data including questionnaires and surveys, interviews, audio‐ and video‐taped class sessions, and written artifacts. Results indicated that the science content course was effective in enabling four of the five participants' views of NOS to be improved. A critical analysis of the effectiveness of the various course components led to the identification of three factors that mediated the development of participants' NOS views during the intervention: (a) contextual factors (context of argumentation, mode of argumentation), (b) task‐specific factors (argumentation scaffolds, epistemological probes, consideration of alternative data and explanations), and (c) personal factors (perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, durability and persistence of pre‐existing beliefs). The results of this study provide evidence to support the inclusion of explicit NOS and argumentation instruction as a context for learning about NOS, and promote consideration of this instructional approach in future studies which aim to enhance learners' views of NOS. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1137–1164, 2010  相似文献   

13.
This article reports the outcomes of a project in which teachers' sought to develop their ability to use instructional practices associated with argumentation in the teaching of science—in particular, the use of more dialogic approach based on small group work and the consideration of ideas, evidence, and argument. The project worked with four secondary school science departments over 2 years with the aim of developing a more dialogic approach to the teaching of science as a common instructional practice within the school. To achieve this goal, two lead teachers in each school worked to improve the use of argumentation as an instructional practice by embedding activities in the school science curriculum and to develop their colleague's expertise across the curriculum for 11‐ to 16‐year‐old students. This research sought to identify: (a) whether such an approach using minimal support and professional development could lead to measurable difference in student outcomes, and (b) what changes in teachers' practice were achieved (reported elsewhere). To assess the effects on student learning and engagement, data were collected of students' conceptual understanding, reasoning, and attitudes toward science from both the experimental schools and a comparison sample using a set of standard instruments. Results show that few significant changes were found in students compared to the comparison sample. In this article, we report the findings and discuss what we argue are salient implications for teacher professional development and teacher learning. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:315–347, 2013  相似文献   

14.
This research explores issues related to the sequencing of structure that is provided as pedagogical guidance. A study was conducted that involved grade 10 students in Singapore as they learned concepts about electricity using four NetLogo Investigations of Electricity agent-based models. It was found that the low-to-high structure learning sequences group participants scored significantly higher on the posttest assessments of conceptual and procedural understanding of electricity concepts, whereas the high-to-high structure learning sequences showed no significant changes from pretest to posttest. The implications of these findings are discussed with respect to other research into the sequencing and design of pedagogical structure and guidance in the literature.  相似文献   

15.
Background: Helping upper elementary and lower secondary school students develop an awareness of various aspects of the nature of science (NOS) and nature of technology (NOT) is a widely recognized goal of science teaching. In this study, we focus on the connections between science and technology (S&T).

Purpose: We report on the design, development, enactment and evaluation of a teaching-learning sequence (TLS) that combines hands-on activities in geometrical optics with explicit epistemological discourse for reflection purposes. The design of the TLS draws on perspectives from the inquiry-oriented and design-based teaching and learning frameworks.

Sample: The enactment of the TLS involved a class of 17 sixth-grade students, aged 10–11 years old, of a public elementary school in Cyprus.

Design and methods: We present findings from written responses to both closed and open-ended tasks as well as follow-up semi-structured interviews that probed students’ understanding of the difference between the main goals of S&T.

Results: The results illustrate elementary students’ readiness to engage with epistemic issues and demonstrate the potential of prompting young learners’ ability to develop informed awareness of the NOS and NOT. The results also provided feedback for the revision of the TLS so as to further enhance its effectiveness in achieving the stated learning objectives.

Conclusion: We discuss the implications of our findings for the teaching of the NOS and NOT and for the design and validation of TLSs. It is possible for students of this age group to develop an awareness of issues related to the NOS and NOT. TLSs can be improved through design-based research approaches to serve as productive tools to this end.  相似文献   

16.
国外关于科学本质教学的研究   总被引:2,自引:0,他引:2  
促进学生对科学本质的理解已成为科学教育的根本目标之一.科学本质阐明了科学所具有的基本特征,是人们对科学本质属性的正确认识.本文对国外关于科学本质的内涵、科学本质的教学内容与学习范畴、融入科学史的科学本质教学、科学探究及科学本质教学的研究等作了概述.  相似文献   

17.
18.
19.
This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12–14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam. The discussion was initiated by asking questions about the phenomenon. Working in groups (with members who had differing viewpoints) and guided by a set of question prompts, an argument sheet, and an argument diagram, students discussed contrasting arguments. One group of students from each class was audiotaped. The number of questions written, the concepts addressed, and the quality of written arguments were then scored. A positive correlation between these factors was found. Discourse analysis showed that the initial focus on questions prompted students to articulate their puzzlement; make explicit their claims and (mis)conceptions; identify and relate relevant key concepts; construct explanations; and consider alternative propositions when their ideas were challenged. Productive argumentation was characterized by students' questions which focused on key ideas of inquiry, a variety of scientific concepts, and which made explicit reference to the structural components of an argument. These findings suggest that supporting students in productive discourse is aided by scaffolding student questioning, teaching the criteria for a good argument, and providing a structure that helps them to organize and verbalize their arguments. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:883–908, 2010  相似文献   

20.
This study describes a collaborative study involving a teacher and university researcher using learning environment research to transform a middle school science learning environment. Habermas' idea of knowledge constitutive interests (technical, practical, and emancipatory) is used as a perspective to make sense of the learning environment. Student perceptions of science and the nature of science were explored. Classroom observations and student interviews were the primary data sources. Students perceived science as primarily a set of facts to be learned and did not view it as an inquiry method or a social process. Despite the characterization of the course by the teacher and students as hands-on and experimental, technical interests were prevalent. Through negotiation, a plan of action was outlined for recreating the learning environment to make it more practical and emancipatory, as well as more consistent with contemporary perspectives on the nature of science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号