首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated how individuals’ construction of explanations—a way of ascertaining how well an individual understands a concept—develops from an interactive simulation. Specifically, the purpose was to investigate the effect of interactive computer simulations or science textbook assignments on the nature and quality of postgraduate science teachers’ explanations regarding physical phenomena in Mechanics, Waves/Optics, and Thermal Physics. The use of simulations or science textbook assignments was implemented according to the Predict–Observe–Explain model and integrated into a one‐semester conceptual survey course in physics for practising science teachers who served as participants in the study. Data were collected through semi‐structured interviews and were analysed using a qualitative content analysis approach. Results indicate that the use of computer simulations along with the application of the Predict–Observe–Explain model had a positive impact on the nature and quality of science teachers’ explanations. They improved science teachers’ ability to generate scientifically accurate explanations and fostered in‐depth advancement in teachers’ search for explanatory scientific information regarding the physical phenomena under investigation. In addition, teachers’ explanations became more elaborate, reflecting cause‐effect reasoning and formal reasoning.  相似文献   

2.
As contact with liquids occurs from an early stage in individuals' lives, children construct explanations for liquids and liquid‐state phenomena. These may differ from the accepted scientific explanations, interfere with formal teaching, and even persist until entry into higher education. The objective of this investigation is to compare student‐teachers' and in‐service science teachers' explanations for liquid‐state phenomena, in three European countries. Data were collected by means of a questionnaire applied to 195 Italian, Portuguese, and Spanish in‐service science teachers. Data analysis revealed poor performance among participants, showing low percentages of correct answers. In addition, no systematic differences were found between participants from the three countries, and teaching experience seems to minimize some of the conceptual difficulties showed by in‐service teachers. Globally, science education seems to have had a limited effect on student‐teachers' and in‐service science teachers' conceptions. We conclude that more attention should be paid to the liquid state in both initial and continuing teacher education programs so that teachers can understand more clearly liquid‐state phenomena and succeed in explaining them to their students. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 349–374, 2007  相似文献   

3.
The purpose of this qualitative interpretive research study was to examine high school students’ written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students’ scientific explanations and students’ perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students’ laboratory reports and individual interviews. The results indicated that students’ explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause–effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist–empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.  相似文献   

4.
Understanding the particulate nature of matter (PNM) is vital for participating in many areas of science. We assessed 11 students’ atomic/molecular‐level explanations of real‐world phenomena after their participation in a modelling‐based PNM unit. All 11 students offered a scientifically acceptable model regarding atomic/molecular behaviour in non‐heated solids. Yet, 10 of 11 students expressed the view that, in response to added heat energy, atoms/molecules in a solid increase in movement to a degree beyond what is scientifically accepted. These students attributed a gas‐like model of atomic/molecular movement to situations involving a heated solid. Of the students who held two conflicting models of atomic/molecular movement in solids, almost all provided justification for doing so, indicating their holding of the conflicting models was unproblematic. These findings can be interpreted to mean that students may drop constraints of certain scientific representations and apply, assess, or revise models when explaining unfamiliar phenomena. In fact, we believe students may develop conflicting causal models as a result of misperceptions they acquire, in part, during classroom instruction regarding atomic/molecular movement. However, our findings may also be interpreted as an incidence of student model development that may later aid their understanding of a more complex model, one that involves substantial sub‐atomic electron movement to account for heat transfer in solids. Whether or not this is the case remains to be seen. Implications for student learning and instruction are discussed.  相似文献   

5.
Understanding scientific phenomena requires comprehension and application of the underlying causal relationships that describe those phenomena (Carey 2002). The current study examined the roles of self-explanation and meta-level feedback for understanding causal relationships described in a causal diagram. In this study, 63 Korean high-school students were randomly assigned to one of three conditions: instructional explanation, self-explanation, and meta-level feedback. Results showed that self-explaining a causal diagram was as effective as studying instructional explanations. Furthermore, the effectiveness of self-explaining a causal diagram was enhanced by meta-level feedback that prompted students to reflect on their own explanations by comparing them with instructional explanations. We identified three main difficulties that high-school students experienced when explaining a causal diagram to themselves: one-sided explanation, erroneous explanation, and the lack of inference. Implications of the study were discussed in regard to the improvement of self-explanation and the design of causal diagrams in science education.  相似文献   

6.
Policy documents in science education suggest that even at the earliest years of formal schooling, students are capable of constructing scientific explanations about focal content. Nonetheless, few research studies provide insights into how to effectively provide scaffolds appropriate for late elementary‐age students' fruitful creation of scientific explanations. This article describes two research studies to address the question, what makes explanation construction difficult for elementary students? The studies were conducted in urban fourth, fifth, and sixth grade classrooms where students were learning science through curricular units that contained 8 weeks of scaffold‐rich activities focused on explanation construction. The first study focused on the kind and amount of information scaffold‐rich assessments provided about young students' abilities to construct explanations under a range of scaffold conditions. Results demonstrated that fifth and sixth grade tests provided strong information about a range of students' abilities to construct explanations under a range of supported conditions. On balance, the fourth grade test did not provide as much information, nor was this test curricular‐sensitive. The second study provided information on pre–post test achievement relative to the amount of curricular intervention utilized over the 8‐week time period with each cohort. Results demonstrated that when taking the amount of the intervention into account, there were strong learning gains in all three grade‐level cohorts. In conjunction with the pre–post study, a type‐of‐error analysis was conducted to better understand the nature of errors among younger students. This analysis revealed that our youngest students generated the most incomplete responses and struggled in particular ways with generating valid evidence. Conclusions emphasize the synergistic value of research studies on scaffold‐rich assessments, curricular scaffolds, and teacher guidance toward a more complete understanding of how to support young students' explanation construction. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 141–165, 2012  相似文献   

7.
It has been commonly assumed that teleological explanations are unnecessary and have no place in the physical sciences. However, there are indications that teleology is fairly common in the instructional explanations of teachers and students in chemistry classrooms. In this study we explore the role and nature of teleological explanations and the conditions that seem to warrant their use in chemistry education. We also analyse the learning implications of developing explanations of chemical phenomena within a teleological stance. Our study is based on the qualitative analysis of the instructional explanations presented in traditional chemistry textbooks used in the United States. Our results indicate that teleological explanations are in fact present in these textbooks and help provide an explanatory reason for the occurrence of chemical transformations. Their use is tightly linked to the existence of a rule, principle, or law that governs the behaviour of a chemical system, and that explicitly or implicitly implies the minimisation or maximisation of some intrinsic property. This law or principle tends to provide a sense of preferred direction in the evolution of a transformation. Although teleological explanations seem to have heuristic pedagogical value in chemistry education, they may also lead students to develop alternative conceptions and unwarranted overgeneralisations.  相似文献   

8.
The research reported in this study examines the very first time the participants planned for and enacted science instruction within a “best-case scenario” teacher preparation program. Evidence from this study indicates that, within this context, preservice teachers are capable of implementing several of the discursive practices of science called for in standards documents including engaging students in science investigations and constructing evidence-based explanations. The participants designed experiences that allowed their students to interact with natural phenomena, gather evidence, and craft explanations of natural phenomenon. The study contends that the participants were able to achieve such successes due to their participation in a teacher education program and field placement, which were designed using a comprehensive, conceptual framework. Video of the participant’s teaching and annotated self-analysis videos served as the primary data for this study. Implications for future research and elementary science teacher education are discussed.  相似文献   

9.
The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students’ learning of science in this 3D way. We examined TCs’ ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs’ ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate’s ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.  相似文献   

10.
Issues regarding scientific explanation have been of interest to philosophers from Pre-Socratic times. The notion of scientific explanation is of interest not only to philosophers, but also to science educators as is clearly evident in the emphasis given to K-12 students' construction of explanations in current national science education reform efforts. Nonetheless, there is a dearth of research on conceptualizing explanation in science education. Using a philosophically guided framework—the Nature of Scientific Explanation (NOSE) framework—the study aims to elucidate and compare college freshmen science students', secondary science teachers', and practicing scientists' scientific explanations and their views of scientific explanations. In particular, this study aims to: (1) analyze students', teachers', and scientists' scientific explanations; (2) explore the nuances about how freshman students, science teachers, and practicing scientists construct explanations; and (3) elucidate the criteria that participants use in analyzing scientific explanations. In two separate interviews, participants first constructed explanations of everyday scientific phenomena and then provided feedback on the explanations constructed by other participants. Major findings showed that, when analyzed using NOSE framework, participant scientists did significantly “better” than teachers and students. Our analysis revealed that scientists, teachers, and students share a lot of similarities in how they construct their explanations in science. However, they differ in some key dimensions. The present study highlighted the need articulated by many researchers in science education to understand additional aspects specific to scientific explanation. The present findings provide an initial analytical framework for examining students' and science teachers' scientific explanations.  相似文献   

11.
The purpose of this quasi‐experimental study was to document the benefits of teaching chemistry through history. The experimental group consisted of seniors enrolled in a teacher preparation program in which they learned how to teach chemistry through the history of science. Their understanding of the nature of science was compared with that of a control group, which consisted of juniors in the same department. The results of the analysis of covariance revealed that the experimental group outperformed the control group on an instrument documenting respondents' understanding of the nature of science. Additional frequency analysis and interview data indicated that the experimental group students had a better understanding of the nature of creativity, the theory‐based nature of scientific observations, and the functions of theories. In the pretreatment interviews, students in the experimental group based their explanations concerning the nature of science primarily on their intuition. In the posttreatment interview, however, they were able to explain their beliefs by using scientists' arguments or hypotheses as examples. This result indicates that the experimental group's understanding about the nature of science was enhanced by learning to teach through the history of science. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 773–792, 2002  相似文献   

12.
13.
This paper focuses on the qualitative methods used to examine one teacher's instructional practice and his students' performance. The qualitative nature of this study reveals insights into teaching and learning through its focus on emerging themes and patterns that developed over time. Methods used included participation‐observation; collection of field notes and documents; administration of a pre/post‐survey; interviews with teacher and students; and analysis of analytic memos. Analysis of the data reveals interesting themes regarding preparation, practice, and performance. The participants included advanced‐level science students and their high school science teacher whose goal was to combine skills‐based instruction (oral communication) with course content (chemistry). Implications for this study provide one example of a qualitative research study of oral communication performance that outlines the various methods used to conduct research in a naturalistic and interpretive setting.  相似文献   

14.
Explaining natural phenomena is an important goal in science teaching. A logical analysis reveals that causal explanations exhibit formal operational structures in that they consist of implication statements chained together through transitive reasoning. It was hypothesized in the present study that individuals who do not reason formally will have difficulty in learning explanations presented in instruction. To test this hypothesis, the effect of levels of operational thought on the explanations which ninth-grade (n = 26) and college (n = 40) physical science students reconstructed after instruction was investigated. Subjects in the study were classified through Piagetian tests as concrete or formal operational. Both concrete and formal subjects were successful in recalling explanations requiring the chaining of two implication statements. Formal operational subjects performed significantly better than concrete operational subjects in three of the four tests of the reconstruction of complex explanations requiring the chaining of six implication statements. In teaching complex causal explanations to students at the concrete operational level, it is suggested that teachers be prepared to furnish some external structuring which the students can rely on in logically relating the various propositions of the explanation to one another.  相似文献   

15.
The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research study involving students enrolled in different types of organic chemistry course sections at our university. Our analysis led to the identification of four distinct mental models, some of which resembled scientific models of acids and acid strength. However, the distinct models are better characterized as synthetic models that combined assumptions from one or more scientific models with intuitive beliefs about factors that determine the properties of chemical substances. For many students in our sample, mental models served more as tools for heuristic decision‐making based on intuitively appealing, but many times mistaken, concept associations rather than as cognitive tools to generate explanations. Although many research participants used a single general mental model to complete all of the interview tasks, the presence of specific problem features or changes in the nature of the task (e.g., prediction vs. explanation) prompted several students to change their mental model or to add a different mental representation. Our study indicates that properly diversifying and sequencing the types of academic tasks in which students are asked to participate could better foster meaningful learning as different types of cognitive resources may be activated by different students, and thus shared, analyzed, and discussed. © 2011 Wiley Periodicals, Inc., Inc. J Res Sci Teach 48: 396–413, 2011  相似文献   

16.
Two reasons are suggested for studying the degree of conceptual integration in student thinking. The linking of new material to existing knowledge is an important aspect of meaningful learning. It is also argued that conceptual coherence is a characteristic of scientific knowledge and a criterion used in evaluating new theories. Appreciating this ‘scientific value’ should be one objective when students learn about the nature of science. These considerations imply that students should not only learn individual scientific models and principles, but should be taught to see how they are linked together. The present paper describes the use of an interview protocol designed to explore conceptual integration across two college‐level subjects (chemistry and physics). The novelty here is that a single interview is used to elicit explanations of a wide range of phenomena. The potential of this approach is demonstrated through an account of one student's scientific thinking, showing both how she applied fundamental ideas widely, and also where conceptual integration was lacking. The value and limitations of using this type of interview as one means for researching conceptual integration in students' thinking are discussed.  相似文献   

17.
The problem addressed in the study was whether 10‐ and 11‐year‐old children, collaborating within a computer‐supported classroom, could engage in progressive inquiry that exhibits an essential principal feature of mature scientific inquiry: namely, engagement in increasingly deep levels of explanation. Technical infrastructure for the study was provided by the Computer‐Supported Intentional Learning Environment (CSILE). The study was carried out by qualitatively analyzing written notes logged by 28 Grade 5/6 students to CSILE's database. Results of the study indicated that with teacher guidance, students were able to produce meaningful intuitive explanations about biological phenomena, guide this process by pursuing their own research questions, and engage in constructive peer interaction that helped them go beyond their intuitive explanations and toward theoretical scientific explanations. Expert evaluations by three widely recognized philosophers of science confirmed the progressive nature of students' inquiry. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 1072–1088, 2003  相似文献   

18.
The purpose of this research project was to study how students in the first years of elementary school (children from 7 to 10 years of age) are initiated into the construction of explanations of physical phenomena in the teaching of science. With this purpose in mind, we organized classes based on the proposition of investigative problems, where children, working in groups, could solve problems by raising and testing their own hypotheses. They would then attempt, by means of general discussion organized by the teacher, to discuss how each problem was solved and why it worked. We videotaped a series of classes in which the students solved 15 different investigative problems. We also analysed the teacher/student interactions that took place (in this paper, we present data on two of these classes). Based on our data we found that students construct their own causal explanations by following a sequence of stages that includes the appearance of novelties. We also discuss how our data relate to the teacher's role in the classroom and to the organization of science teaching at this level.  相似文献   

19.
Contributing to the recent debate on whether or not explanations ought to be differentiated from arguments, this article argues that the distinction matters to science education. I articulate the distinction in terms of explanations and arguments having to meet different standards of adequacy. Standards of explanatory adequacy are important because they correspond to what counts as a good explanation in a science classroom, whereas a focus on evidence-based argumentation can obscure such standards of what makes an explanation explanatory. I provide further reasons for the relevance of not conflating explanations with arguments (and having standards of explanatory adequacy in view). First, what guides the adoption of the particular standards of explanatory adequacy that are relevant in a scientific case is the explanatory aim pursued in this context. Apart from explanatory aims being an important aspect of the nature of science, including explanatory aims in classroom instruction also promotes students seeing explanations as more than facts, and engages them in developing explanations as responses to interesting explanatory problems. Second, it is of relevance to science curricula that science aims at intervening in natural processes, not only for technological applications, but also as part of experimental discovery. Not any argument enables intervention in nature, as successful intervention specifically presupposes causal explanations. Students can fruitfully explore in the classroom how an explanatory account suggests different options for intervention.  相似文献   

20.
This paper examines the experiences reported by scientists and graduate students regarding the experiences that first engaged them in science. The interviews analysed for this paper come from Project Crossover, a mixed‐methods study of the transition from graduate student to PhD scientist in the fields of chemistry and physics. This analysis involved review of 116 interviews collected from graduate students and scientists and focused on the timing, source, and nature of their earliest interest in science. The majority (65%) of participants reported that their interest in science began before middle school. Females were more likely to report that their interest was sparked by school‐related activities, while most males recounted self‐initiated activities. Our findings indicate that current policy efforts (which focus on high school science reform) to increase the numbers of students studying in the science fields, may be misguided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号