首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We present ideas about concepts underlying climate change, held by students in years 9 and 10. Misconceptions about climate change are common among students, and may be due to misconceptions about underlying concepts. To investigate this, we developed the Climate Change Concept Inventory (CCCI), and trialed it with 229 students; corroborating findings through focus group interviews. Our interview method and data analysis methods are described. Findings included overestimation of human contributions to atmospheric carbon inputs, ultra violet radiation in sunlight, and greenhouse gases in the atmosphere. Students were unaware that CO2 dissolves in water, and of the role of oceans in the carbon cycle. Greenhouse gases other than CO2 were rarely known. Earth’s energy balance and black body radiation were not well understood. There were misconceptions about interactions between electromagnetic radiation and atmospheric gases; and limited understanding of carbon chemistry. The CCCI is available from the corresponding author.  相似文献   

2.
Abstract

This study assessed 4th, 8th, and 11th grade students' understanding of natural and social science concepts related to pollution. A representative sample of public school students (n = 105) in 11 Maine schools was selected, and students were interviewed on four concept principles considered critical to a full understanding of the pollution problem. The concept of pollution included the much publicized issues of solid and toxic waste as well as air, soil, and water pollution. Research assertions were summarized in generalized correct concept statements indicating the extent of current student knowledge. Common misconceptions were also noted.

This study considered student understanding from a human ecological perspective, that is, as an integrated set or cluster of concepts related to pollution. This reflects a complex, integrated, and multidisciplinary conception of natural phenomena. Human constructivism, meaningful learning theory, and principles related to the relevance of student schema in the design of curriculum and instructional strategies guided this work.

The results of this study have implications for teaching about pollution and the design of science education curriculum materials based upon student knowledge. This information can guide teaching strategies concerning current environmental problems and thus help learners gain an appreciation for the complex and multi-disciplinary nature of science, technology, and society and how they affect the environment.  相似文献   

3.
Abstract

This study assessed the level of scientific and natural resource knowledge that fourth-, eighth-, and eleventh-grade students in Maine possess concerning acidic deposition. A representative sample of public school students (N = 175) was interviewed on twelve concept principles considered critical to a full understanding of the acidic deposition problem. These included geological, meteorological, ecological, political, and economic concepts. Student knowledge was rated for each concept principle on a scale of complete, high partial, low partial, or no understanding. Common misconceptions were also noted. Generalized correct concept statements of current student knowledge are reported, as well as generalized missing concepts. Our conclusions have implications for teaching about acidic deposition and the design of environmental education curriculum materials based upon student knowledge. This information can help teachers better instruct students about current environmental problems and thus help learners gain an appreciation for the complex and multidisciplinary nature of science and the environment.  相似文献   

4.
This study describes primary school students’ knowledge about rainfall, clouds and rainbow formation together with teachers’ predictions about students’ performance. In our study, primary school students’ (N?=?177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school teachers’ (N?=?110) awareness of students’ understanding was measured with questionnaires and the results will be discussed in relation to teaching experience and the use of different teaching practices. Our results show that students in every grade hold a wide-ranging set of misconceptions that reflect different combinations of their own understanding and learnt scientific knowledge. Teachers tended to overestimate students’ performance and described second-grade students’ knowledge more accurately than fourth- and sixth-grade students’ knowledge. Teachers with less teaching experience were found to less overestimate and more underestimate sixth-grade students’ knowledge than teachers with more teaching experience.  相似文献   

5.
ABSTRACT

The study that is the subject of this paper tested the effects of EDI (explanation-driven inquiry) on students’ redox conceptual understanding and their misconceptions. Two classes of 119 10th grade high school students were involved. Two groups of students in the same school were chosen. One class that was taught by EDI teaching was set as the treatment group and another class that received conventional teaching was set as the control group. Students’ conceptual understanding was measured by a standardised instrument, and the students’ misconceptions were compared. The analysis of covariance showed that EDI teaching had significant effects on students’ redox conceptual understanding, and the results of the chi-square test demonstrated that students’ conceptual understanding level was improved by using EDI teaching. Also, after comparing the two groups of students’ misconceptions of redox, the results indicated that the students’ misconceptions changed toward deeper conceptual understanding in the treatment group that used EDI. Finally, some suggestions were made on how to implement EDI in the classroom.  相似文献   

6.
This paper describes the method used by the author to teach a class of Year 8 students about light and its properties so that the students’ own ideas were considered and their misconceptions addressed. To achieve this a series of teaching modules were designed using a model of conceptual change suggested by Posner and his colleagues at Cornell University. Students’ prior misconceptions about light were identified using a pretest developed by the author. After teaching a posttest was used to determine if the teaching method resulted in a lower level of misconceptions. Interviews from seven students selected at random and the observations gathered by a participant observor were used to verify results. It was found that the teaching method resulted in a lower level of misconceptions in the sample and this was confirmed by the results of the interviews and participant observation. This paper concentrates on the design and content of one of the teaching modules. Specializations: students’ misconceptions in science.  相似文献   

7.
Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment.

Purpose: This study examined the effectiveness of PBL on candidate science teachers’ understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL.

Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey.

Design and methods: A one-group pretest–posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests.

Results: The PBL approach has a positive effect on the students’ learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning.

Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.  相似文献   

8.
Cooperative learning is an active learning approach in which students work together in small groups to complete an assigned task. Students commonly find the subject of ‘physical and chemical changes’ difficult and abstract, and thus they generally have many misconceptions about it.

Purpose

This study aimed to investigate the effects of jigsaw cooperative learning activities developed by the researchers on sixth grade students’ understanding of physical and chemical changes.

Sample

Participants in the study were 61 sixth grade students in a public elementary school in Izmir, Turkey.

Design and methods

A pre-test and post-test experimental design with a control group was used, and students were randomly assigned to the experimental and control groups. Instruction of the subject was conducted via jigsaw cooperative learning in the experimental group and via teacher-centered instruction in the control group. During the jigsaw process, experimental group students studied the subjects of changes of state, changes in shape and molecular solubility from physical changes, and acid–base reactions, combustion reactions and changes depending on heating from chemical changes in their jigsaw groups.

Results

The concept test results showed that jigsaw cooperative learning instruction yielded significantly better acquisition of scientific concepts related to physical and chemical changes, compared to traditional learning. Students in the experimental group had a lower proportion of misconceptions than those in the control group, and some misconceptions in the control group were identified for the first time in this study.

Conclusions

Jigsaw cooperative learning is an effective teaching technique for challenging sixth grade students’ misconceptions in the context of physical and chemical changes, and enhancing their motivation, learning achievements, self-confidence and willingness in the science and technology lesson. This technique could be applied to other chemistry subjects and other grade levels.  相似文献   

9.
10.
11.
BOOK REVIEW     

This paper presents the results of a long-term project which compared primary school student-teachers' theories on teaching with their actual teaching, investigated the factors underlying the revealed discrepancy and tried to explain it. The results indicated that although student-teachers' educational views shifted in their final year of study towards a child-centred and constructivist view of teaching, this was not implemented in their actual teaching. Analysis of videotaped lessons and interviews with student-teachers revealed some grave misconceptions about teaching and learning. The paper argues that these misconceptions were the principal factor underlying the mismatch that was identified between student-teachers' theories on teaching and their actual teaching. The hypothesis is also put forth that these misconceptions are likely the result of deeply embedded cultural values through which student-teachers' understanding of the new pedagogical approaches is mediated.  相似文献   

12.
The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students’ performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from “outside”), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.  相似文献   

13.
Abstract

The nature of physics as a scientific discipline is largely determined by the models of reality it utilizes. It is therefore appropriate that teachers of physics have a sound knowledge of the origin and nature of these models, their functions and the role they play in the development of the discipline. The results of a study with regard to the perceptions of models held by prospective physical science (a combination of physics and chemistry) teachers studying at South African universities are reported in this paper. The overall conclusion drawn from the study is that these students are far from prepared to incorporate models properly in their teaching. General misconceptions about models have also been identified. These misconceptions can have far‐reaching effects on the structuring of the physics knowledge of pupils exposed to them.  相似文献   

14.
Background: Number sense is a key topic in mathematics education, and the identification of children’s misconceptions about number is, therefore, important. Information about students’ serious misconceptions can be quite significant for teachers, allowing them to change their teaching plans to help children overcome these misconceptions. In science education, interest in children’s alternative conceptions has led to the development of three- and four-tier tests that not only assess children’s understandings and misconceptions, but also examine children’s confidence in their responses. However, there are few such tests related to mathematical content, especially in studies of number sense.

Purpose: The purpose of this study was to investigate children’s performance and misconceptions with respect to number sense via a four-tier diagnostic test (Answer Tier → Confidence rating for Answer Tier → Reason Tier → Confidence rating for Reason Tier).

Design and method: A total of 195 fifth graders (10–11 years old) from Taiwan participated in this study. The four-tier test was web-based and contained 40 items across five components of number sense.

Findings: The results show that (1) students’ mean confidence rating for the answer tier was significantly higher than for the reason tier; (2) an average of 68% of students tended to have equal confidence ratings in both answer and reason tiers; (3) students who chose correct answers or reasons had higher mean confidence ratings in most items (36 out of 40) than those who did not; and (4) 16 misconceptions were identified and most of them were at a strong level.

Conclusion: The four-tier test was able to identify several misconceptions in both the answer and reason tier and provide information about the confidence levels. By using such information, teachers may be better positioned to understand the nature of learners’ misconceptions about number sense and therefore support their pupils’ progress in mathematics.  相似文献   

15.

This paper compares resistance by scientists to new ideas in scientific discovery with students' resistance to conceptual change in science learning. First, the resistance by students to abandon their misconceptions concerning scientific topics is studied. Next, the resistance by scientists to scientific discovery is studied and some of the causes of such resistance are explored. Some conclusions and direct implications for science teaching are suggested.  相似文献   

16.
ABSTRACT

The purpose of this study is to investigate the effect of MagAR, an instructional material for teaching magnetism using augmented reality and sensing technology, on students’ academic achievement and learning process, and to identify students’ views about augmented reality. An embedded mixed-method approach was employed in this study. The study’s results suggest that AR learning environments are effective in teaching physics, and facilitate learning by adding visual and textual components to the learning process. In learning activities integrated with AR, the students were observed to participate more, appeared more comfortable, were able to answer questions related to the subject more easily, had increased self-confidence and exhibited higher academic achievement levels in physics. The results suggest that AR should not be considered as an independent learning environment for the teaching of physics, but would be more effective as supplementary to the laboratory environment.  相似文献   

17.

This study describes a lesson in which students engaged in inquiry in evolutionary biology in order to develop a better understanding of the concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations, also known as microevolution. This paper describes how a software simulation called EVOLVE can be used to foster discussions about the conceptual knowledge used by advanced secondary or introductory college students when investigating the effects of natural selection on hypothetical populations over time. An experienced professor's use and rationale of a problem-based lesson using the simulation is examined. Examples of student misconceptions and naïve (incomplete) conceptions are described and an analysis of the procedural knowledge for experimenting with the computer model is provided. The results of this case study provide a model of how EVOLVE can be used to engage students in a complex problem-solving experience that encourages student meta-cognitive reflection about their understanding of evolution at the population level. Implications for teaching are provided and ways to improve student learning and problem solving in population genetics are suggested.  相似文献   

18.
Abstract

The story we are about to tell occurred when Gayle was a middle school science teacher and graduate student in Joanne's seminar on the study of teaching. Gayle was trying to make sense of her science students' indifference toward the environment, an attitude that concerned her as an environmentalist. She turned her inquiry into an action research project that sought to answer the question, ‘What are the assumptions that my middle school students have about their relationship with the environment?’ Joanne was mentoring Gayle in her action research study, and at the same time exploring Gayle's perspective as an action researcher. Now, several years later, we are both action researchers and teacher educators and understand that we have been looking through the eyes of our students in order to become scholars of our own teaching.  相似文献   

19.
Existing studies report on secondary school students’ misconceptions related to climate change; they also report on the methods of teaching as reinforcing misconceptions. This quasi-experimental study was designed to test the null hypothesis that a curriculum based on constructivist principles does not lead to greater understanding and fewer misconceptions on acid rain, global warming, greenhouse effect, and ozone layer depletion than the traditional Malaysian curriculum. For this purpose, two classes from two different schools were randomly assigned to experimental (N?=?35) and control condition (N?=?38). Following the intervention, an ANCOVA with pre-test as the covariate showed statistically significant differences in understanding for all four topics; additional interviews with randomly selected students from experimental and control group further underscore the findings. Implications are discussed.  相似文献   

20.
The purpose of this study was to examine the effects of using ‘hands-on’ models (HOMs) to teach the subject of seasons – a topic about which students often have misconceptions – on students’ expressed models. To this end, three different HOMs were developed. The study sample consisted of 80 seventh graders (ages 12–13). The study had a quasi-experimental design, and a model with a control group was used. The experimental group and the control group were assigned randomly. The study data were collected using an open-ended question form that was administered three times: pre-instruction, post-instruction and a long time after instruction (permanence). The collected data were analysed using the content analysis technique. Frequencies and percentages were used to analyse the changes in the students’ expressed models. The results of the analyses showed that using HOMs was an effective method for teaching the subject of seasons. It was concluded that whereas teaching with HOMs led the students to a ‘scientific’ model, the teaching method used in the control group led the students to a ‘synthesis’ model. In addition, the learning that occurred in the group taught with the HOMs was found to be more permanent than the learning that occurred in the control group. Based on these results, the use of HOMs to teach astronomy and the generalisation of these models has been recommended. Lastly, issues to consider when teaching the subject of seasons have been outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号