首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although research has come to recognize the importance of studying classroom-based student–teacher discourse in science, the emphasis remains largely on teachers' abilities to ask questions and provide students with feedback, or on students' abilities to ask questions or engage in argumentative discourse. Consequently, little research has focused on the discourse elements relating to teacher–student discourse interactions. In this article, we argue for a shift of research attention toward describing what the teacher is responding to (Identification of student inquiry), the process of deciding how to respond (Interpretation—Evaluation of student inquiry), and how the teacher is responding (Response to student inquiry). We propose a new methodological approach for studying teacher discourse, which involves a framework we developed while analyzing 1,385 minutes of fifth grade, whole-class science conversations covering a 2-year period and facilitated by an experienced science teacher. Then, as a case in point, we applied our framework to the teacher discourse data of the study, aiming to show that the framework can be a useful tool for examining how a teacher supports students' inquiry.  相似文献   

2.
3.
Constructivism has become a major focus of recent pedagogical reform in mathematics education. However, epistemological reform that is based on the constructivist referent of learning as conceptual change has a very limited viability in traditional mathematics classrooms because of its cultural insensitivity. By contrast, the social epistemology of critical constructivism addresses the socio-cultural contexts of knowledge construction and serves as a powerful referent for cultural reform. From this perspective, the social reality of traditional mathematics classrooms is governed by powerful cultural myths that restrain the discursive practices of teachers and students. The power of the repressive myths of cold reason and hard control is evident in the ways in which they act in concert to create a highly coherent and seemingly natural social reality. Epistemological reform of traditional mathematics classroom learning environments is, therefore, synonomous with cultural reconstruction. Critical constructivism, which has a central concern with discourse ethics and the moral agency of the teacher, draws on the social philosophy of Jurgen Habermas and argues for an alternative culture of communicative action to be established in mathematics classrooms. Teachers are expected to work collaboratively as agents of cultural change in forums beyond their classrooms.Religions, philosophies, arts, the social forms of primitive and historic man, prime discoveries in science and technology, the very dreams that blister sleep, boil up from the basic, magic ring of myth.(Joseph Campbell, The Hero With a Thousand Faces, 1968, p. 8.)  相似文献   

4.
Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers’ knowledge, beliefs and conceptions regarding science and science teaching, this conceptual paper seeks to direct attention toward discursive practices surrounding inquiry science teaching in teacher education programs for understanding why most science teachers do not teach science through inquiry. The paper offers a theoretical framework centered on critical notions of subjection and performativity as a much needed perspective on making/becoming of science teachers through participation in discursive practices of science teacher education programs. It argues that research based on such perspectives have much potential to offer a deeper understanding of the difficult challenges teacher education programs face in preparing inquiry practicing science teachers.  相似文献   

5.
Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead’s (Sci Educ 81: 217–238, 1997, Science Educ 85:180–188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313–333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers’ attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.  相似文献   

6.
7.
This study examined how, in some instances, participation in the cultural practices of high school science classrooms created intrapersonal conflict for ethnic minority students. Discourse analysis of videotaped science classroom activities, lectures, and laboratories was the primary methodology employed for analyzing students' discursive identity development. This analysis demonstrated differential appropriation of science discourse as four significant domains of discursive identities emerged: Opposition status, Maintenance status, Incorporation status, and Proficiency status. Students characterized as Opposition Status avoided use of science discourse. Students who exhibited Maintenance Status illustrated a commitment to maintaining their normative discourse behavior, despite a demonstrated ability to appropriate science discourse. Students characterized as Incorporation Status made active attempts to incorporate science discourse into their normative speech patterns, while Proficiency Status students demonstrated a fluency in applying scientific discursive. Implications for science education emerging from the study include the illumination of the need to make the use of specific scientific discourse an explicit component of classroom curriculum. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 810–834, 2004  相似文献   

8.
9.
ABSTRACT

Background: As inquiry-based instruction is not universally implemented in science classrooms, it is crucial to introduce instructional strategies through the use of contextualized learning activities to allow students with different background knowledge and abilities to learn the essential competencies of scientific inquiry and promote their emotional perception and engagement.

Purpose: This study explores how essential scientific competencies of inquiry can be integrated into classroom teaching practices and investigates both typical and gifted secondary students’ emotional perception and engagement in learning activities.

Sample: A case teacher along with 226 typical and 18 gifted students from a suburban secondary school at Taiwan participated in this study.

Design and methods: After attending twelve 3-hour professional development workshops that focused on scientific inquiry teaching, the case teacher voluntarily developed and elaborated her own teaching activities through the discussions and feedback that she received from workshop participants and science educators. Quantitative and qualitative data were collected through activity worksheet, questionnaire, video camera, and tape recorders. Frequency distribution, Mann-Whitney U test, and discourse analysis were used for data analyses.

Results: Case teacher’s teaching activities provide contextual investigations that allow students to practice making hypotheses, planning investigations, and presenting and evaluating findings. Students’ learning outcomes reveal that typical students can engage in inquiry-based learning with positive emotional perception as well as gifted students regardless of their ability level. Both gifted and typical students’ positive emotional perception of and active engagement in learning provide fresh insight into feasible instructions for teachers who are interested in inquiry-based teaching but have little available time to implement such instructions into their classrooms.

Conclusions: The results of our work begin to address the critical issues of inquiry-based teaching by providing an exemplary teaching unit encompassing essential scientific competencies  相似文献   

10.
11.
This study focuses on the structure and theoretical foundations of the book club for promoting multicultural understandings in science teacher education. The book club was defined as an informal, peer‐directed group discussion that met regularly to discuss an ethnographic, multicultural text regarding issues pertinent to science teaching and learning in urban classrooms. Twenty‐three preservice teachers (PSTs) enrolled in a 16‐week elementary science methods course at a large urban university participated in the study. From the qualitative analyses of PSTs' written reflections and researcher journal notes, five themes which emphasize Individual, Collaborative, and Collective learning are presented. These findings highlight how the book club structure and theoretical foundation fostered critical, reflective inquiry and served as a method for effecting ideological change which is needed in order to embrace issues of diversity in urban science education. Implications for science teacher education concerning the relevancy of pedagogical strategies, the use of multiple theoretical perspectives, and the book club as a strategy in teacher education and urban education are discussed. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 46: 1041–1066, 2009  相似文献   

12.
This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher–students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants’ instruction with computer technology was (Teacher) initiation–(Student and Teacher) response sequences–(Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers’ learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers’ own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.  相似文献   

13.
The dialogue that occurs in science classrooms has been the subject of research for many decades. Most studies have focused on the actual discourse that occurs and the role of the teacher in guiding the discourse. This case study explored the neglected perspective of secondary science students and their beliefs about their role in class discussions. The study participants (N?=?45) were students in one of the three differentially tracked chemistry classes taught by the same teacher. Findings about the differences that exist among students from different academic tracks are reported. While it seems that epistemological beliefs focusing on content are common for the students in this study, the students' social framing in the different tracks is important to consider when teachers attempt to transition to more dialogic forms of discourse. Some key findings of this study are (a) students’ beliefs that science is a body of facts to be learned influenced the factors they deemed important for whole-class discussion, (b) students from the lower-level track who typically were associated with lower socioeconomic status were more likely to view their role as passive, and (c) students’ comfort level with the members of the class seemed to influence their decisions to participate in class discussions.  相似文献   

14.
15.
In reform-based science curricula, students’ discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants’ othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.  相似文献   

16.
To a science ‘outsider’, science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential component of science language is the academic vocabulary that characterises it. This mixed-methods study investigates middle school students’ (N?=?59) growth in academic vocabulary as it relates to their teacher’s instructional practices that supported academic language development. Students made significant gains in their production of general academic words, t(57)?=?2.32, p?=?.024 and of discipline-specific science words, t(57)?=?3.01, p?=?.004 in science writing. Results from the qualitative strand of this inquiry contextualised the students’ learning of academic vocabulary as it relates to their teacher’s instructional practices and intentions as well as the students’ perceptions of their learning environment. These qualitative findings reveal that both the students and their teacher articulated that the teacher’s intentional use of resources supported students’ academic vocabulary growth. Implications for research and instruction with science language are shared.  相似文献   

17.
This study investigated how professional development featuring evidence‐based customization of technology‐enhanced curriculum projects can improve inquiry science teaching and student knowledge integration in earth science. Participants included three middle school sixth‐grade teachers and their classes of students (N = 787) for three consecutive years. Teachers used evidence from their student work to revise the curriculum projects and rethink their teaching strategies. Data were collected through teacher interviews, written reflections, classroom observations, curriculum artifacts, and student assessments. Results suggest that the detailed information about the learning activities of students provided by the assessments embedded in the online curriculum motivated curricular and pedagogical customizations that resulted in both teacher and student learning. Customizations initiated by teachers included revisions of embedded questions, additions of hands‐on investigations, and modifications of teaching strategies. Student performance improved across the three cohorts of students with each year of instructional customization. Coupling evidence from student work with revisions of curriculum and instruction has promise for strengthening professional development and improving science learning. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1037–1063, 2010  相似文献   

18.
The analysis identified discursive strategies used by general education teachers in inclusion classrooms to orchestrate and scaffold the verbal participation of all students, including students with learning disabilities (LD). The context was writing instruction. A whole‐class lesson involving teacher–student collaboration to write a text was analyzed for each of two teachers in two urban elementary inclusion classrooms totaling 67 students; 23 students had LD. Analysis of teacher talk focused on procedural strategies (help the lesson run smoothly and make it easier to follow) and involvement strategies (elicit students' attention to and participation in the lesson). Results indicated that both teachers used a variety of similar strategies to provide spaces for student contributions and, at the same time, move the lessons along. However, they also used contrasting strategies unique to their contrasting pedagogical frames of reference (structural vs. interactional).  相似文献   

19.
Building on the ‘questioning-based discourse analytical’ framework developed by Singapore-based science educator and discourse analyst, Christine Chin, this study investigated the extent to which fifth-grade science teachers' use of questions with either an authoritative or dialogic orientation differentially restricted or expanded the quality and complexity of student responses in the USA. The author analyzed approximately 10 hours of classroom discourse from elementary science classrooms organized around inquiry-based science curricula and texts. Teacher questions and feedback were classified according to their dialogic orientation and contextually inferred structural purpose, while student understanding was operationalized as a dynamic interaction between cognitive process, syntacto-semantic complexity, and science knowledge type. The results of this study closely mirror Chin's and other scholars' findings that the fixed nature of authoritatively oriented questioning can dramatically limit students' opportunities to demonstrate higher order scientific understanding, while dialogically oriented questions, by contrast, often grant students the discursive space to demonstrate a greater breadth and depth of both canonical and self-generated knowledge. However, certain teacher questioning sequences occupying the ‘middle ground’ between maximal authoritativeness and dialogicity revealed patterns of meaningful, if isolated, instances of higher order thinking. Implications for classroom practice are discussed along with recommendations for future research.  相似文献   

20.
Reform based curriculum offer a promising avenue to support greater student achievement in science. Yet teachers frequently adapt innovative curriculum when they use them in their own classrooms. In this study, we examine how 19 teachers adapted an inquiry‐oriented middle school science curriculum. Specifically, we investigate how teachers' curricular adaptations (amount of time, level of completion, and activity structures), teacher self‐efficacy (teacher comfort and student understanding), and teacher experience enacting the unit influenced student learning. Data sources included curriculum surveys, videotape observations of focal teachers, and pre‐ and post‐tests from 1,234 students. Our analyses using hierarchical linear modeling found that 38% of the variance in student gain scores occurred between teachers. Two variables significantly predicted student learning: teacher experience and activity structure. Teachers who had previously taught the inquiry‐oriented curriculum had greater student gains. For activity structure, students who completed investigations themselves had greater learning gains compared to students in classrooms who observed their teacher completing the investigations as demonstrations. These findings suggest that it can take time for teachers to effectively use innovative science curriculum. Furthermore, this study provides evidence for the importance of having students actively engaging in inquiry investigations to develop understandings of key science concepts. © 2010 Wiley Periodicals, Inc., J Res Sci Teach 48: 149–169, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号