首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

2.
Students' views about science were correlated with their approaches to lab practice. Three distinct cases are discussed in detail: empiricist‐oriented, rationalist‐oriented, and constructivist‐oriented students. A coherent epistemological theory was constructed for each case, by considering the different degrees of certainty and confidence each student attributed to theoretical versus experimental knowledge in science. These theories could explain the difference between the students' methods of preparation for the lab session and their approaches to writing the lab report. It was shown that overconfidence in one type of knowledge led to oversimplification of the relation between theory and evidence. Findings suggest that epistemological theories play a crucial role in determining whether and how students coordinate theory and empirical evidence in their lab practice. Inspecting and correcting students' lab reports in accordance with these findings can offer an easy way to identify students' epistemological theories and to provide appropriate feedback. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1134–1159, 2007  相似文献   

3.
The purpose of this study was to examine the effects of open inquiry instruction with low achieving, marginalized high school students. Students with long histories of scholastic failure were asked to participate in question generation, experimental design, and argument construction as a part of their General Science course instruction. Videotapes were collected from daily science instruction, and entrance and exit instruction interviews were conducted using identical open‐ended problems. From this dataset, comparisons were made between students' entrance and exit interview responses representing change over time. Shifts in student responses coincided with renegotiated classroom norms for scientific discourse. Results are reported for five students in the form of assertions. Students' arguments were observed to shift toward those more consistent with the nature of the scientific arguments including: (1) students' tentativeness of knowledge claims, (2) students' use of evidence, and (3) students' views regarding the source of scientific authority. Implications are discussed for research and practice in light of the national standards' call for universal scientific literacy. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 807–838, 2000  相似文献   

4.
Students' personal theories about education change as students gather new evidence about intelligence, learning, and knowledge. The present study investigated whether college instructors' play a role in changing students' personal theories with the messages professors send in the classroom. Students (N = 162) and instructors (N = 15) of undergraduate-level math and science summer courses completed surveys assessing personal theories about education and the frequency of messages related to educational beliefs. Multilevel models found that both between-class and within-class differences in reported messages corresponded with students' personal beliefs at the end of the course. Instructors' personal theories were generally not predictive of students' personal theories, and students' initial personal theories predicted the messages they remembered hearing.  相似文献   

5.

Responses to a written beliefs test for 178 eighth grade students and interviews with a subset of the students are analysed to investigate students' beliefs about the tentativeness of scientific knowledge and about the autonomy and strategies appropriate for science learning. These three dimensions of beliefs are salient because they align with the image of science teaching promoted by current reform movements. Analyses focus on change in beliefs and relationships among dimensions of beliefs and between those beliefs and students' understandings of science concepts. Results show that students' beliefs do not change much during the one-semester course. Students who view scientific knowledge as tentative also try to understand science. Autonomous students do not hold the most productive learning strategies, though students with low autonomy develop significantly less coherent understandings of science concepts. Instructional implications focus on potential roles of teachers and technology in promoting productive beliefs about scientific knowledge and science learning. Implications for individualized instruction follow classroom-level implications.  相似文献   

6.
Students' epistemological beliefs about scientific knowledge and practice are one important influence on their approach to learning. This article explores the effects that students' inquiry during a 4‐week technology‐supported unit on evolution and natural selection had on their beliefs about the nature of science. Before and after the study, 8 students were interviewed using the Nature of Science interview developed by Carey and colleagues. Overall, students held a view of science as a search for right answers about the world. Yet, the inconsistency of individuals' responses undermines the assumption that students have stable, coherent epistemological frameworks. Students' expressed ideas did not change over the course of the intervention, suggesting important differences between students' talk during inquiry and their abilities to talk epistemologically about science. Combined with previous work, our findings emphasize the crucial role of an explicit epistemic discourse in developing students' epistemological understanding. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 369–392, 2003  相似文献   

7.
Issues regarding scientific explanation have been of interest to philosophers from Pre-Socratic times. The notion of scientific explanation is of interest not only to philosophers, but also to science educators as is clearly evident in the emphasis given to K-12 students' construction of explanations in current national science education reform efforts. Nonetheless, there is a dearth of research on conceptualizing explanation in science education. Using a philosophically guided framework—the Nature of Scientific Explanation (NOSE) framework—the study aims to elucidate and compare college freshmen science students', secondary science teachers', and practicing scientists' scientific explanations and their views of scientific explanations. In particular, this study aims to: (1) analyze students', teachers', and scientists' scientific explanations; (2) explore the nuances about how freshman students, science teachers, and practicing scientists construct explanations; and (3) elucidate the criteria that participants use in analyzing scientific explanations. In two separate interviews, participants first constructed explanations of everyday scientific phenomena and then provided feedback on the explanations constructed by other participants. Major findings showed that, when analyzed using NOSE framework, participant scientists did significantly “better” than teachers and students. Our analysis revealed that scientists, teachers, and students share a lot of similarities in how they construct their explanations in science. However, they differ in some key dimensions. The present study highlighted the need articulated by many researchers in science education to understand additional aspects specific to scientific explanation. The present findings provide an initial analytical framework for examining students' and science teachers' scientific explanations.  相似文献   

8.
This study investigates how 25 junior high school students employed their bodies of knowledge and responded to problem cues while individually performing a science experiment and reasoning about a drops phenomenon. Line‐by‐line content analysis conducted on students' written ad hoc explanations aimed to reveal students' concepts and their relations within their explanations, and to construe students' mental models for the science phenomenon based on level of specification, models' correspondence with scientific claims, macro versus micro view of matter, and type of evidence used. We then inferred four types of knowledge representations for the nature of matter. Findings are discussed in terms of implications for science teaching. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 970–993, 2004  相似文献   

9.
Policy documents in science education suggest that even at the earliest years of formal schooling, students are capable of constructing scientific explanations about focal content. Nonetheless, few research studies provide insights into how to effectively provide scaffolds appropriate for late elementary‐age students' fruitful creation of scientific explanations. This article describes two research studies to address the question, what makes explanation construction difficult for elementary students? The studies were conducted in urban fourth, fifth, and sixth grade classrooms where students were learning science through curricular units that contained 8 weeks of scaffold‐rich activities focused on explanation construction. The first study focused on the kind and amount of information scaffold‐rich assessments provided about young students' abilities to construct explanations under a range of scaffold conditions. Results demonstrated that fifth and sixth grade tests provided strong information about a range of students' abilities to construct explanations under a range of supported conditions. On balance, the fourth grade test did not provide as much information, nor was this test curricular‐sensitive. The second study provided information on pre–post test achievement relative to the amount of curricular intervention utilized over the 8‐week time period with each cohort. Results demonstrated that when taking the amount of the intervention into account, there were strong learning gains in all three grade‐level cohorts. In conjunction with the pre–post study, a type‐of‐error analysis was conducted to better understand the nature of errors among younger students. This analysis revealed that our youngest students generated the most incomplete responses and struggled in particular ways with generating valid evidence. Conclusions emphasize the synergistic value of research studies on scaffold‐rich assessments, curricular scaffolds, and teacher guidance toward a more complete understanding of how to support young students' explanation construction. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 141–165, 2012  相似文献   

10.
Arguments for teaching about the nature of science have been made for several decades. The most recent science education policy documents continue to assert the need for students to understand the nature of science. However, little research actually explores how students develop these understandings in the context of a specific course. We examine the growth in students' understanding about the nature of astronomy in a one‐semester college course. In addition to student work collected for 340 students in the course, we also interviewed focus students three times during the course. In this article we briefly describe class data and discuss in detail how five students developed their ideas throughout the course. In particular, we show the ways in which students respond to instruction with respect to the extent to which they (a) demand and examine evidence used for justifying claims, (b) integrate scientific and religious views, and (c) distinguish between scientific and nonscientific theories. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 340–362, 2000.  相似文献   

11.
Scientific literacy is an important goal for science education, especially within controversial socioscientific issues. In this study, we analysed 143 students' research reports about stem cell research (SCR) for how they addressed specific source evaluation criteria provided within the assignment. We investigated students' opinions about SCR, how they used the evaluation criteria to evaluate online sources and whether the evaluation criteria and/or the specific sources influenced their opinion and/or understanding of SCR. We found that most of the students supported some form of SCR and reported that their sources were credible and contained more factual information than opinions. Students critiqued the language of the authors, as well as status in their respective fields, along with the content within each source. Additionally, students reported that their sources influenced their content knowledge, but had little influence regarding their SCR opinions. Through this work, we present a new working model and suggest the need for additional research about the understudied interface of opinion, understanding and evaluation within the context of important socioscientific issues. Students' opinions and content knowledge, located at the model's centre, influence and are influenced by the research topic, the sources used, the evaluation criteria and the evaluation of the sources that students use to provide evidence for claims.  相似文献   

12.
Students in competence-based vocational education are expected to actively construct a personal professional theory, in which they integrate different types of knowledge and beliefs. Students' personal professional theories are seen as an important learning outcome of competence-based vocational education. However, it is unknown how personal professional theories can be measured. This study focused on measuring the content and nature of students' personal professional theories using a multi-method triangulation approach, in which 16 students in the domain of Social Work constructed a concept map, an interview and a self-report. The results show that the relatively structured methods (i.e., interviews and concept maps) reveal more insight into students' personal professional theories than less structured methods (i.e., self-reports). It is concluded that both structure as well as adequate prompts are important in the process of explicating personal professional theories.  相似文献   

13.
Teleology has been described as an intuitive cognitive bias and as a major type of student conception. There is controversy regarding whether teleological explanations are a central obstacle to, are legitimate in, or are even supportive of science learning. However, interaction in science classrooms has not yet been investigated with regard to teleology. Consequently, this study addresses the question of how teleological explanations emerge in science classroom interactions about evolution and how teachers and students address emerging teleology. In this article, we introduce a theoretical and methodological framework drawing from the sociology of knowledge and systems theory, suggesting that this framework may enrich the understanding of knowledge construction and of social practices in the science classroom because it enables distinguishing between explicit and tacit knowledge. We investigated seven secondary school units about evolution and present data from four grade-12 classes in Germany, a country with very few creationists, to contrast two ways in which teleology is addressed. In the first type, the teachers combine intentional and need-based teleological explanations with aspects of scientific theories in an ambiguous way. Contrastingly, in the second type, the teachers construct a duality between correct mechanistic and incorrect teleological explanations by discrediting preceding scientific theories. In the discussion, we argue that the presented sociological approach can also be valuable in other science education contexts, such as creationism, the nature of science and socio-scientific issues, because classroom interaction involves tacit communication, such as a tacit epistemology, which are essential grounds for the students' knowledge construction.  相似文献   

14.
This paper is based on research investigating Hong Kong Chinese teachers' and students' perceptions of junior secondary students' concerns and of the causes of students' difficulties. Responses from 2,045 secondary students and 214 teachers revealed that both students and teachers had similar systems of beliefs about students' concerns and the causes of students' difficulties. As dimensions of most students' concerns, both groups referred to study and educational future; friendship; physical appearance; relationships at home, with peers and at school; and psychological well-being and maladjusted behaviour. Both groups in various degrees attributed students' difficulties to students themselves, the family, school or peers. Employing Moscovici's theory of social representation as a conceptual framework, the findings illustrated that students' concerns and causal attribution are social representations shared by both student and teacher groups. Mismatch between students' and teachers' perceptions was more a divergence of views than a disparity. Students' and teachers' different social identities and their protection of group self-esteem are offered as an explanation for the mismatch in perception.  相似文献   

15.
The purpose of this research was to examine pre-college students' understandings of the nature of science and track those beliefs over the course of an academic year. Students' conceptions of the nature of science were examined using a model of the nature of science developed for use in this study. The model has eight tenets which address both the nature of the scientific enterprise and the nature of scientific knowledge. Findings indicate participants held fully formed conceptions of the nature of science consistent with approximately one-half of the premises set out in the model. Students held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Their conceptions remained mostly unchanged over the year despite their participation in the project-based, hands-on science course. Implications for teaching the nature of science are discussed.  相似文献   

16.
17.
Part of the work of teaching elementary science involves evaluating elementary students' work. Depending on the nature of the student work, this task can be straightforward. However, evaluating elementary students' representations of their science learning in the form of scientific models can pose significant challenges for elementary teachers. To address some of these challenges, we incorporated a modeling-based elementary science unit in our elementary science teaching methods course to support preservice teachers in gaining knowledge about and experience in evaluating students' scientific models. In this study, we investigate the approaches and criteria preservice elementary teachers use to evaluate elementary student-generated scientific models. Our findings suggest that with instruction, preservice elementary teachers can adopt criterion-based approaches to evaluating students' scientific models. Additionally, preservice teachers make gains in their self-efficacy for evaluating elementary students' scientific models. Taken together, these findings indicate that preservice teachers can begin to develop aspects of pedagogical content knowledge for scientific modeling.  相似文献   

18.
This introduction to the special issue Understanding the Public Understanding of Science: Psychological Approaches discusses some of the challenges people face in understanding science. We focus on people's inevitably bounded understanding of science topics; research must address how people make decisions in science domains such as health and medicine without having the deep and extensive understanding that is characteristic of domain experts. The articles reflect two broad streams of research on the public understanding of science—the learning orientation that seeks to improve understanding through better instruction and the communications orientation that focuses on attitudes about science and trust in scientists. Challenges to understanding science include determining the relevance of information, the tentativeness of scientific truth, distinguishing between scientific and nonscientific issues, and determining what is true and what is false. Studying the public understanding of science can potentially contribute to psychological theories of thinking and reasoning in modern societies.  相似文献   

19.
This study investigated the effects of scaffolds as cognitive prompts and as metacognitive evaluation on seventh-grade students' growth of content knowledge and construction of scientific explanations in five inquiry-based biology activities. Students' scores on multiple-choice pretest and posttest and worksheets for five inquiry-based activities were analyzed. The results show that the students' content knowledge in all conditions significantly increased from the pretest to posttest. Incorporating cognitive prompts with the explanation scaffolds better facilitated knowledge integration and resulted in greater learning gains of content knowledge and better quality evidence and reasoning. The metacognitive evaluation instruction improved all explanation components, especially claims and reasoning. This metacognitive approach also significantly reduced students' over- or underestimation during peer-evaluation by refining their internal standards for the quality of scientific explanations. The ability to accurately evaluate the quality of explanations was strongly associated with better performance on explanation construction. The cognitive prompts and metacognitive evaluation instruction address different aspects of the challenges faced by the students, and show different effects on the enhancement of content knowledge and the quality of scientific explanations. Future directions and suggestions are provided for improving the design of the scaffolds to facilitate the construction of scientific explanations.  相似文献   

20.
This study illustrates how contextualization influences students' reasoning. An experiment on the properties of air was demonstrated with alternative designs to two groups of primary students (n = 45). Students' written explanations to the observations show that an experiment in which science equipment and chemicals are used poses a significant problem to these students, who have not yet been introduced to the different disciplines of school science. We argue that the scientific arrangement of experiments might in fact obstruct students' sound reasoning in explaining phenomena. In relation to its role as a trigger for reasoning, scientific equipment calls for a more conscious utilization than is often the case in school science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号