首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes and discusses an epistemological approach to the education of science teachers that emphasizes similarities in knowledge and modes of acquiring it among children, scientists in their historical contexts, and student teachers. Advanced courses in science-teacher education aim to go beyond the attainment of scientific knowledge and pedagogical content knowledge toward the building of a guiding theory of action for teaching. This theory needs to be rooted in a broad understanding of what science is about, what is regarded as scientific knowledge, and how it is generated and evolves. These questions are of an epistemological nature. At the same time, theories of action for teaching science are also connected with questions on individual ways of learning and of acquiring meaning. Such questions are often answered by both cognitive and developmental psychologists. Even here epistemological consideration are essential. Constructivist epistemology, which describes the process of constructing knowledge both in individuals and among scientists, can serve as a basis for generating such a guiding pedagogical theory of teaching. Educating science teachers in the light of radical versions of constructivism can enhance this process. This article describes in detail a course entitled “The Growth of Thinking on Evolution,” which was taught to third-year student teachers and which illustrates the approach and discusses the rationale behind it.  相似文献   

2.
This article outlines the use of concept maps as a tool for science curriculum development and discusses the changes that occur in the teacher's view of the curriculum with successive revisions of the maps. Although we have used concept mapping in curriculum development with teachers from grades 4–8, we describe in detail the maps created by sixth-grade teachers. We analyzed the maps using three criteria: hierarchical structure, progressive differentiation, and integrative reconciliation. Changes made to the maps during the revision process, including additions and deletions, show increased clarification of both the concepts to be learned and the connections between them. Consecutive map revisions show the development of a cohesive conceptual grade-six science curriculum. The use of concept maps can help science teachers develop science curriculum that is hierarchically arranged, integrated, and conceptually driven.  相似文献   

3.
The German philosopher Edmund Husserl critiqued natural science for contributing to an 'ontological reversal', meaning that abstract mathematical models of phenomena are taken as more real than phenomena themselves, as they appear in our everyday experience. Nowadays many scientists have abandoned the correspondence theory of truth concerning their theoretical models, but the effects of the 'ontological reversal' may still linger among lay people. The primary purpose of this paper is to investigate whether this 'reversal' is present in the thinking and reasoning of pre-service science teachers. In the project upon which the paper is based, twenty-three student teachers were introduced to Goethe's theory of colour. They were then placed in small groups and given the task of discussing whether Goethe's theory is scientific or not. The group discussions were recorded and analysed in terms of thematic contents. The ontological reversal seemed to be present as an implicit 'figure of thought' in some of the statements made in the discussions. The educational consequences of this kind of thinking for science teaching are discussed.  相似文献   

4.
This article describes views about the nature of science held by a small sample of science students in their final year at the university. In a longitudinal interview study, 11 students were asked questions about the nature of science during the time they were involved in project work. Statements about the nature of science were characterized and coded using a framework drawing on aspects of the epistemology and sociology of science. The framework in this study has three distinct areas: the relationship between data and knowledge claims, the nature of lines of scientific enquiry, and science as a social activity. The students in our sample tended to see knowledge claims as resting solely on empirical grounds, although some students mentioned social factors as also being important. Many of the students showed significant development in their understanding of how lines of scientific enquiry are influenced by theoretical developments within a discipline, over the 5–8 month period of their project work. Issues relating to scientists working as a community were underrepresented in the students' discussions about science. Individual students drew upon a range of views about the nature of science, depending on the scientific context being discussed. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 201–219, 1999  相似文献   

5.
Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists’ videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers’ sense-making of scientific practices to teach climate change. The findings show that experienced teachers’ and scientists’ explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists’ lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.  相似文献   

6.
This study, conducted in an inner-city middle school, followed the conceptual changes shown in 25 students' writing over a 12-week science unit. Conceptual changes for 6 target students are reported. Student understanding was assessed regarding the nature of matter and physical change by paper-and-pencil pretest and posttest. The 6 target students were interviewed about the goal concepts before and after instruction. Students' writing during lesson activities provided qualitative data about their understandings of the goal concepts across the science unit. The researcher constructed concept maps from students' written statements and compared the maps across time to assess changes in the schema of core concepts, complexity, and organization as a result of instruction. Target students' changes were studied in detail to determine patterns of conceptual change. After patterns were located in target students' maps, the remaining 19 students' maps were analyzed for similar patterns. The ideas that students identified in their writing showed changes in central concepts, complexity, and organization as the lessons progressed. When instructional events were analyzed in relation to students' demonstrated ideas, understanding of the goal conceptions appeared in students' writing more often when students had opportunities to explain their new ideas orally and in writing.  相似文献   

7.
This article addresses ideas about the particulate nature of matter that are considered to be correct or acceptable in science education and studies of children's misconceptions. It argues that science teachers and educators use educational as well as scientific criteria for correctness, and that these criteria do not always coincide. Relations between the particulate nature of matter in science and science education are analyzed in an attempt to make more intelligible children's inclination to attribute all kinds of macroscopic properties to particles. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Teleology has been described as an intuitive cognitive bias and as a major type of student conception. There is controversy regarding whether teleological explanations are a central obstacle to, are legitimate in, or are even supportive of science learning. However, interaction in science classrooms has not yet been investigated with regard to teleology. Consequently, this study addresses the question of how teleological explanations emerge in science classroom interactions about evolution and how teachers and students address emerging teleology. In this article, we introduce a theoretical and methodological framework drawing from the sociology of knowledge and systems theory, suggesting that this framework may enrich the understanding of knowledge construction and of social practices in the science classroom because it enables distinguishing between explicit and tacit knowledge. We investigated seven secondary school units about evolution and present data from four grade-12 classes in Germany, a country with very few creationists, to contrast two ways in which teleology is addressed. In the first type, the teachers combine intentional and need-based teleological explanations with aspects of scientific theories in an ambiguous way. Contrastingly, in the second type, the teachers construct a duality between correct mechanistic and incorrect teleological explanations by discrediting preceding scientific theories. In the discussion, we argue that the presented sociological approach can also be valuable in other science education contexts, such as creationism, the nature of science and socio-scientific issues, because classroom interaction involves tacit communication, such as a tacit epistemology, which are essential grounds for the students' knowledge construction.  相似文献   

9.
The Elementary Science Integration Project (ESIP) brought together teachers knowledgeable about, and committed to, whole-language instruction with their science-oriented counterparts to explore connections between the disciplines and build from teachers' strengths. By recognizing commonalities, that both hands-on science and whole language center on inquiry and focus on children's learning processes, ESIP was designed to reveal the issues both groups of teachers see as important as they go about making classroom decisions. The ultimate goal of the project was to promote science as central to cross-curricular study, thus increasing the comfort level of teachers, the amount of time devoted to science in the classroom, and an interest in inquiry. This article described the project and identified the considerations teachers used to evaluate science–language-arts connections. Twenty expert and 7 novice teachers worked together over a 2-year period to construct and elaborate their own understandings of curricular integrátion, designing action research projects to explore their newfound understandings. Teachers kept journals and participated in extensive group discussions and interviews that provided the data sources for this article. Results revealed the influence of teachers' scholarly and pedagogical orientations on the way they think about science–language-arts connections and the influence of personal experiences in convincing teachers that science–language-arts connections are worth fostering in the classroom.  相似文献   

10.
11.
This article examines the impact of a specially designed in-service model on teacher understanding of selected science concepts. The underlying idea of the model is to get teachers to restructure their own understanding of a selected science topic by having them study the structure and evolution of their students' ideas on the same topic. Concepts on topics from the life, earth, and physical sciences served as the content focus and middle school Grades 4–9 served as the context for this study. The in-service experience constituting the main treatment in the study occurred in three distinct phases. In the initial phase, participating teachers interviewed several of their own students to find out what kinds of preconceptions students had about a particular topic. The teachers used concept mapping strategies learned in the in-service to facilitate the interviews. Next the teachers teamed with other teachers with similar topic interests and a science expert to evaluate and explore the scientific merit of the student conceptual frameworks and to develop instructional units, including a summative assessment during a summer workshop. Finally, the student ideas were further evaluated and explored as the teachers taught the topics in their classrooms during the fall term. Concept maps were used to study changes in teacher understanding across the phases of the in-service in a repeated-measures design. Analysis of the maps showed significant growth in the number of valid propositions expressed by teachers between the initial and final mappings in all topic groups. But in half of the groups, this long-term growth was interrupted by a noticeable decline in the number of valid propositions expressed. In addition, analysis of individual teacher maps showed distinctive patterns of initial invalid conceptions being replaced by new invalid conceptions in later mappings. The combination of net growth of valid propositions and the patterns of evolving invalid conceptions is discussed in constructivist terms.  相似文献   

12.
In this paper we consider the ways in which students' activities during project work are influenced by their images of science, e.g. their views about the purposes of science, the nature of scientific knowledge and the role of social processes in scientific activity. We also investigate the kinds of project activities which promote the development of students' images of science. We draw on case studies of 11 science students' experiences of investigative project work in their final year at university. For one of these students naive views about the epistemology of science constrain her project activities. We suggest that the concept of 'epistemic demand' may help in anticipating difficulties that students might have during project work. We also find that students' images of science are developed as a result of messages communicated both implicitly and explicitly through project work.  相似文献   

13.
We have designed a model for transformational science teaching focused on linking theory and practice through curriculum decision making that has been the framework for professional development sessions for middle-grade science teachers during the past 5 years. Interviews with teachers revealed that their experiences with curriculum development were of significant value in making decisions concerning the design of classroom environments. As teachers reflected on current research about teaching and learning, in collaboration with university scientists and science educators, they were informed by theoretical perspectives which held implications for their practice. Curriculum development became a vehicle for professional development and school reform; however, it was vital that the teachers were in clear communication with their administrators and communities concerning reform issues. Students and teachers from schools implementing the model and from control sites were interviewed to determine the model's influence on instructional practices and student attitude and achievement in science. The five-phase model for transformational science teaching is discussed here, accompanied by teacher comments about tensions experienced at each phase. This discussion is followed by an analysis of teacher and student interview data that reveals teachers' use of instructional strategies and students' attitudes toward science. Results and analysis of student performance on a mandated end-of-grade science test are also included. From this evidence, we recommend a new design for professional development opportunities for teachers that engages them in decision making as they reflect about the connections between theory and practice and the value of continually testing, revising, and reevaluating curriculum and instructional issues. J Res Sci Teach 34: 773–789, 1997.  相似文献   

14.
The purpose of this article is to provide an overview of the nature of models and their uses in the science classroom based on a theoretical review of literature. The ideas that science philosophers and science education researchers have in common about models and modelling are scrutinised according to five subtopics: meanings of a model, purposes of modelling, multiplicity of scientific models, change in scientific models and uses of models in the science classroom. First, a model can be defined as a representation of a target and serves as a ‘bridge’ connecting a theory and a phenomenon. Second, a model plays the roles of describing, explaining and predicting natural phenomena and communicating scientific ideas to others. Third, multiple models can be developed in science because scientists may have different ideas about what a target looks like and how it works and because there are a variety of semiotic resources available for constructing models. Fourth, scientific models are tested both empirically and conceptually and change along with the process of developing scientific knowledge. Fifth, in the science classroom, not only teachers but also students can take advantage of models as they are engaged in diverse modelling activities. The overview presented in this article can be used to educate science teachers and encourage them to utilise scientific models appropriately in their classrooms.  相似文献   

15.
In order to change the attitude of early adolescent female and male students toward scientists and women in science, students in the middle school/junior high grades were exposed over a two months' period to women science career role models as part of their science instruction. This treatment positively affected the students' attitude toward scientists and toward women in science. It is suggested that teachers of science in the middle school/junior high should periodically bring community resource people who use science in their careers to the classroom to act as role models and that women should be included among this group so that the attitudes of both male and female students toward scientists and women in science might be improved.  相似文献   

16.

As a result of the reductionist approach to science curricula in tertiary education, students are learning science in a fragmented way. With the purpose of providing students with tools for a more holistic understanding of science, an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge (its relationships, connections and generalities) is developed. GST is used as the core methodology for understanding science and its complexity. By analogy with geographic maps, we introduce scales of educational 'science maps' - scales of integration. Three principal scales of integration can be distinguished in GST, which we consider necessary for GST to be effectively applied in education. They are (a) the scale of branches and fields of science, (b) the scale of hypotheses and theories, and (c) the scale of structures and hierarchies. Examples of each of these three scales are provided from the field of physical science. The role of the scientific community in producing accessible, and essential, maps of scientific knowledge for science education is discussed.  相似文献   

17.
It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 1016–1031, 2002  相似文献   

18.
This article looks critically at the complexity of the debate among climate scientists; the controversies in the science of global temperature measurement; and at the role played by consensus. It highlights the conflicting perspectives figuring in the mass media concerned with climate change, arguing that science teachers should be familiar with them, particularly given the sharply contested views likely to be brought into classroom discussion and the importance of developing intellectual scepticism and robust scientific literacy in students. We distinguish between rational scepticism and the pejorative meaning of the expression associated with attitudinal opposition to global warming—similar to the way in which Bauer (2006) contrasts micro-scepticism and macro-scepticism in reasoning generally. And we look closely and critically at the approaches which teachers might adopt in practice to teach about global warming at this difficult time.  相似文献   

19.
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers’ beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists’ work and the ways in which science and society influence each other.  相似文献   

20.
The 2015 Programme for International Student Assessment (PISA) has drawn a substantial amount of attention from science educators and educational policymakers because it marked the first time that PISA assessed students' ability to evaluate and design scientific inquiry using computer-based simulations. We undertook a secondary analysis of the PISA 2015 Taiwan dataset of 7,973 students from 214 schools to identify critical issues of student learning and potentially reshape our educational system and policies. Thus, this study sought to identify potential latent clusters of students' scientific literacy performance according to a set of focus variables selected from the PISA student questionnaires. In addition, significant determinants of students' scientific literacy and resiliency were analyzed. Cluster analysis results demonstrated the presence of four clusters of high, medium, low, and inferior scientific literacy/epistemology/affective dispositions. Specifically, students in cluster 1 compared with other clusters showed that the higher the scientific literacy scores are, the more positive epistemic beliefs about science, achievement motivation, enjoyment of science, interests in broad science, science self-efficacy, information and communications technology (ICT) interest, ICT autonomy, more learning time, more teacher supports and teacher-directed instructions are. Regression results indicated that the most robust predictor of students' scientific literacy performance is epistemic beliefs about science, followed by learning time, interest in broad science topics, achievement motivation, inquiry-based science teaching and learning practice, and science self-efficacy. Decision tree model results showed that the descending order of the variables in terms of their importance in differentiating students as high- versus low-performing were epistemic beliefs about science, learning time, self-efficacy, interest in broad science, and scientific inquiry, respectively. A similar decision tree model to determine students as resilient versus non-resilient also was found. Various interpretations of these results are discussed, as are their implications for science education research, science teaching, and science education policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号