首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在直线和圆的教学过程中遇到这样一个问题 :已知圆C1:x2 + y2 - 2x + 10 y- 2 4 =0 ,圆C2 :x2 +y2 + 2x + 2 y- 8=0 ,求经过两圆交点A、B的直线l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 - 2x + 10 y- 2 4 =0 ,(1)x2 + y2 + 2x + 2 y- 8=0 . (2 )(1) - (2 ) ,得- 4x+ 8y - 16 =0 ,即x- 2 y + 4=0 ,变形得 x=2 y- 4. (3)将 (3)代入 (2 )化简整理 ,得y2 - 2 y =0 ,解得 y1=0 ,y2 =2 .将 y1=0 ,y2 =2…  相似文献   

2.
对于有些解析几何题,正面思考或按常规方法求解较难时,若能利用圆锥曲线系,巧设未知数,往往能起到事半功倍的效果,下举例说明.一、得用共交点的圆锥曲线系解题一般地过圆锥曲线C1:f(x,y)=0与圆锥曲线C2:g(x,y)=0的交点的圆锥曲线系方程都可以表示成:f(x,y)+λg(x,y)=0(λ≠-1)(不包括圆锥曲线C2),如过圆C1:x2+y2+D1x+E1y+F=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的圆系方程为:x2+y2+D1x+E1y+F+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).例1已知圆C1:x2+y2+3x+4y+3=0,圆C2:x2+y2+4x+5y-1=0,求过已知两圆的交点,且过原点的圆的方程.解由已知不妨设过已知两圆的交点圆的方程为:x2+y2+3x+4y+3+λ(x2+y2+4x+5y-1)=0(λ≠-1).又圆过原点,将(0,0)代入圆方程可解得λ=3,从而所求的方程为:4x2+4y2+15x+19y=0.  相似文献   

3.
在直线和圆的教学过程中遇到这样一个问题 :已知圆 C1 :x2 + y2 -2 x + 10 y -2 4=0 ,圆 C2 :x2 + y2 + 2 x + 2 y -8=0 ,求经过两圆交点 A、B的直线 l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据直线方程的两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 -2 x + 10 y -2 4=0  (1)x2 + y2 + 2 x + 2 y -8=0   (2 )(1) -(2 )得 :-4 x + 8y -16=0 ,即x -2 y + 4=0 ,变形得 :x =2 y -4 (3 )将 (3 )代入 (2 )化简整理得 :y2 -2 y =0 ,解得 :y1 =0 ,y…  相似文献   

4.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

5.
<正>一、教学节录1.在问题求解中培养思维能力。师:请大家证明下列例题:已知圆C的方程是x2+y2+y2=r2=r2,求证:经过圆C上一点M(x_0,y_0)的切线方程是x_0x+y_0y=r2,求证:经过圆C上一点M(x_0,y_0)的切线方程是x_0x+y_0y=r2。(苏教版高中数学必修2第117页习题第11题)(给学生思考的时间,先由学生独立思考,  相似文献   

6.
解答习题一方面使学生理解和巩固所学到的知识 ,另一方面也可以培养学生的思维能力 .本文通过一道解析几何题的两种解法 ,谈谈对学生思维能力的培养 .问题 :求过直线 x 2 y 2 =0与圆 x2 y2 -2 x 4 y 1 =0的两个交点和点 ( 2 ,3 )的圆的方程1 通过已知与未知的辩证关系求解分析 :如果先求直线 x 2 y 2 =0与圆 x2 y2 -2 x 4 y 1 =0的交点 ,再将两个交点和已知点 ( 2 ,3 )分别代入圆的一般方程 x2 y2 Ax By C=0 ,以求 A,B,C,将涉及二元二次方程的问题 ,做起来较繁 .由解析几何知识 ,方程 x2 y2 Ax By C λ( x2 y2 A′x B′y C′)…  相似文献   

7.
刘长柏 《高中生》2009,(16):6-7
1.直线4x+3y=40与圆x2+y2=100的位置关系是A.相交B.相切C.相离D.无法确定2.经过点M(2,1)作圆x2+y2=5的切线,则切线方程是A.姨2x+y-5=0B.姨2x+y+5=0C.2x+y-5=0D.2x+y+5=03.直线y=x-1上的点到圆x2+y2+4x-2y+4=0的最短距离为  相似文献   

8.
<正>圆的一般式方程C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).当点P(x0,y0)不在圆C上时,x20+y20+Dx0+Ey0+F≠0,该数值有何几何意义呢?经过探索,我们发现结论已知圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),点P(x0,y0).(1)点当P在圆外时,切线PA切圆于点A,则切线长  相似文献   

9.
最近,我听了一位教师课题为《曲线方程的求法》的一节课.其中一道例题:求圆心在(2,1),且与x2+y2?3x=0的公共弦所在直线过点(5,?2)的圆的方程.解由已知可设圆的方程为x2+y2?4x?2y+F=0.(1)又x2+y2?3x=0,(2)(1)?(2)得?x?2y+F=0.而直线?x?2y+F=0过点(5,?2),把(5,?2)代入?x?2y+F=0,得F=1.因此所求圆的方程为:x2+y2?4x?2y+1=0.评课会上,有人提出:(1)?(2)所得?x?2y+F=0一定是相交弦吗?若不是,它又是什么呢?本文就此展开讨论.不失一般性,设两个不同的圆22O1:x+y+D1x+E1y+F1=022(D1+E1?4F1>0).(3)22O2:x+y+D2x+E2y+F2=022(D2+E2?4F2>0).(4)(3…  相似文献   

10.
一、选择题:每小题5分,共计60分,答案唯一1.直线xcosθ+y-1=0(θ∈R)的倾斜角的范围是()A.[0,π)B.[π4,3π4]C.[0,π4]∪[3π4,π)D.[-π4,π4]2.直线(x+1)a+b(y+1)=0与圆x2+y2=2的位置关系是()A.相切B.相交或相切C.相离D.不能确定3.已知椭圆的准线是x=4,对应的焦点F(2,0),离心率e=12,则椭圆的方程是()A.x28+y24=1B.2x2+3y2-7x+4=0C.3x2+y2+28y+60=0D.3x2+4y2-8x=04.设θ∈[-π,π],点P(1,1)到直线xcosθ+ysinθ=2的最大距离是()A.2B.2C.2+2D.2-25.过A(4,-1)且与圆x2+y2+2x-6y+5=0切于点B(1,2)的圆的方程是()A.(x+3)2+(y+1)2=5B.…  相似文献   

11.
解析几何的解题过程涉及变元多,往往导致运算繁琐.如能恰当地巧用"设而不求"策略,就能较大地减少运算量,简化过程,提高解题效率·一、巧求曲线方程【例1】求两圆C1:x2 y2 6x-4=0和C2:x2 y2 6y-28=0的公共弦所在的直线方程·解:设两圆的交点为A(x1,y1),B(x2,y2)则x12 y12 6x1-4=  相似文献   

12.
正"圆"是苏教版必修二中重要的一块内容,是几何与代数的交汇点,也是高考的热点之一.以下主要研究其常见的几类问题.一、求圆的标准方程例1已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为.(2010天津文数)解析:本题主要考查圆的方程的求法,属于容易题.令y=0得x=-1,所以直线x-y+1=0,与x轴的交点为(-1,0).因为直线与圆相切,所以圆心到直线的距离等于半径,即r=-1+0+3姨2=姨2,所以圆C的方程为(x+1)2+y2=2.  相似文献   

13.
求曲线方程的常用思路和方法1.直译法例1求与y轴相切,并且和圆x2+y2-4x=0外切的圆的圆心的轨迹方程.解由x2+y2-4x=0,有(x-2)2+y2=22.  相似文献   

14.
1.问题背景 文[1]及文[2]讨论了⊙C1:x2+y2+D1x+E1y+F1=0及⊙C2:x2+y2+D2x+E2y+F2=0无公共点时,方程x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+ F2)=0的意义,但均没有指明方程表示何种曲线. 本文试图通过对方程x2+ y2+ Dx+Ey+F+λ(Ax+By+C)=0及x2+ y2+ D1x+E1y+F1+λ(x2+ y2+ D2x+E2y+ F2)=0的分析,从而阐明:当直线l与⊙M及⊙C1与⊙C2相交(以下简称“相交圆系”)时,上述方程一定表示圆;当直线l与⊙M及⊙C1与⊙C2不相交(以下简称“非相交圆系”)时,上述方程可能表示何种曲线.  相似文献   

15.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

16.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

17.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

18.
笔者在教学圆一节时,有学生提出了两个很有意思的问题:1.已知圆的方程x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程。这是课本中一道可作结论用的例题,答案是x0x+y0y=r2。他们提出如果点M不在圆上,直线x0x+y0y=r2。又是客观存在的,那么它与圆有怎样的关系呢?  相似文献   

19.
<正> 某些条件最值问题,若能巧妙地构造出直线与圆,利用直线与圆的位置关系来解,则可化繁为简,化难为易.例1 如果实数x和y满足方程x+y-4=0,则x2+y2的最小值是( )(A)4 (B)6 (C)8 (D)10  相似文献   

20.
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.到点A(-1,0)的距离与到直线x=3的距离相等的点的轨迹方程是( ) A.y2=8x+8 B.y2=-4x+4 C.x2=-8y+8 D.x2=-4x+4 2.已知直线ax+by+c≠0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|,|b|,|c|的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号