首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
微分中值定量是利用导数的局部性来研究函数在区间上整体性的重要工具,是微分学的理论基础,也是导数应用的理论基础,本文以微分中值定量的几体解释为基点,采用形数相结合的数学语言,给出几种构造辅助出数的思维方法。  相似文献   

2.
构造辅助函数是证明微分中值定理的基本方法,本给出了四种构造辅助函数的方法,并将原有条件减弱后可得到推广后的微分中值公式。  相似文献   

3.
给出微分学中的中值定理的推广的一个结论,将微分学中的Cauchy中值定理以及Lagrange中值定理作为此推广结论的特殊.另外对推广定理的证明所作的辅助函数解释了它的意义。  相似文献   

4.
5.
本文通过对Lapange定理的分析证明,提出了微分中值定理证明中辅助函数的引进方法。  相似文献   

6.
介绍证明拉格朗日中值定理时构造辅助函数的几种方法,用类似的方法对柯西定理进行了证明;同时对微分中值定理加以推广,得到了更一般的情形.  相似文献   

7.
本文通过对中位定理的几何解释,直观地构造出证明定理2、定理3的多种辅助函数,并简述了三定理之间的相互关系及它们在微积分学中的作用。  相似文献   

8.
通过构造一个对应的函数用字母k表示,化简函数的形式,给出中值定理的一种规律性证法,可以建立中值问题构造辅助函数的一般方法。  相似文献   

9.
关于构造辅助函数证明微分中值定理的进一步探讨   总被引:1,自引:0,他引:1  
报分中值定理是微分学的基本理论,其中Lagrange定理和Cauchy定理的证明关键是构造辅助函数。中扰如何构造辅助函数、辅助函数是否惟一等问题作进一步探讨。  相似文献   

10.
文章给出罗尔中值定理的一个推论及给出辅助函数新的构造方法,来证明拉格朗日中值定理和柯西中值定理。  相似文献   

11.
本文从多个角度对微分中值定理加以证明,揭示其几何物理意义,且给出一些推广和应用。  相似文献   

12.
利用Rolle微分中值定理和推广的Grace定理,获得了一些新的二重积分中值定理和复函数积分中值定理,推广和改进了积分型Cauchy中值定理和二重积分中值定理.  相似文献   

13.
给出的五种证明方法。通过构造不同的辅助函数,应用了数形结合思想,从中拓展了学生的思路,培养学生的创造性思维,也为发现其他数学定理的证明开辟了思路,为中值定理的教学提供参考及教学思考。  相似文献   

14.
构造辅助函数是利用微分中值定理解决问题的关键,构造辅助函数的方法较多.本文给出的常数K值法用来构造辅助函数更加直观、易行.  相似文献   

15.
对于Lagrange中值定理证明,一般的教科书中普遍采用利用辅助函数的方法。本文通过旋转坐标轴的方法也完成了对Lagrange中值定理的证明。  相似文献   

16.
积分中值定理的命题一般不成立,本文利用函数在一点单调的概念,研究了二重积分第一中值定理的逆命题,给出了逆命题成立的条件。  相似文献   

17.
研究了如何应用拉格朗日中值定理求极限、证明不等式、恒等式、判定函数的单调性以及确定方程的根,通过给出相关例子加以说明.  相似文献   

18.
该文论述了积分第一中值定理中的介值点可在开区间(a,b)内取得的基本证明,并以例题说明。  相似文献   

19.
用微积分、线性代数、概率论等高等数学知识证明了二元均值定理,其证法的多样性引起了广泛的兴趣和讨论。  相似文献   

20.
在动态区间上研究了高阶Cauchy中值定理“中间点”的渐进性.得到的结果推广了以往的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号