首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一元二次方程ax2+bx+c=0(a≠0)根的分布问题,实质上是函数 f(x)=ax2+bx+c(a≠0)的零点分布问题,即抛物线与x轴的交点问题.下面从两个视角审视一元二次方程根的分布问题:(1)方程视角(韦达定理法);(2)函数视角(图象法).设一元二次方程ax2+bx+c=0(a≠ 0)的两根为x1、x2,m、n、p、q∈R,则有:  相似文献   

2.
设一元二次方程ax2 bx c=0(a≠0)(1),其实根为x1,x2.对应的二次函数为f(x)=ax2 bx c(a≠0),则f(0)=c.1一元二次方程根的基本分布———零分布所谓一元二次方程根的零分布,指的是  相似文献   

3.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

4.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

5.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

6.
高中代数新教材上册212页例10,(旧上册 P_(170)例3).设tgα、tgβ是一元二次方程 ax~2 bx c=0(b≠0)的两个根,求 ctg(α β)的值.教材解法:在一元二次方程ax~2 bx c=0中a≠0,由一元二次方程根与系数关系,得,tgα tgβ=-b/a,tgαtgβ=c/a而ctg(α β)=1/tg(α β)=1-tgαtgβ[]tgα tgβ由题设b≠0,故tgα tgβ≠0,代入,得,ctg(α β)=1-c/a/-b/a=a-c/-b=c-a/b.这种解法很普遍,教材这样解,平时教师学生都这样  相似文献   

7.
一元二次方程根与系数的关系是初中数学的重要内容之一,也是中考数学中经常考到的一个知识点.有关一元二次方程根与系数的关系的题目有很多类型,现举例说明,供大家参考. 一、讨论已知方程的根的性质、求根或根的代数式的值1.讨论方程根的性质例1 当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根?(2002年广东省广州市中考试题)解:(1)当a=0时,方程为4x-1=0,解得x=14.①(2)当a≠0时,Δ=42-4a(-1)=16+4a,令16+4a≥0,得a≥-4.∴当a≥-4且a≠0时,方程有两个实数根.②设方程的两个实数根为x1、x2,由根与系数的关系,得x1x2=-1a,x1+…  相似文献   

8.
李冬学 《新高考》2008,(10):32-33
关于x的一元二次方程ax2+bx+c=0(a,b,c∈R且a≠0)的根即为其对应的函数y=ax2+bx+c的零点,亦即该函数的图象与x轴的交点的横坐标.一元二次方程的根的分布问题主要有两类:已知方程中参数  相似文献   

9.
一元二次方程是初中数学的重要内容.巧妙地构造一元二次方程,可以解决许多难度较大的问题.现以几道典型的竞赛题为例,介绍构造一元二次方程的常用方法.一、应用方程根的定义例1若ab≠1,且有5a2+2001a+9=0,9b2+2001b+5=0,则ba的值是().(A)95(B)59(C)-20501(D)-20901(2001年全国初中数学联赛试题)解:显然b≠0,由9b2+2001b+5=0,得5b1#$2+2001·1b+9=0.又5a2+2001·a+9=0,由ab≠1知a≠b1,所以a、1b是方程5x2+2001x+9=0的两个根.由根与系数的关系知a·b1=95,即ba=59,选(B).二、应用根的判别式例2已知41(b-c)2=(a-b)(c-a),且a≠0,则b+a c=.(1999…  相似文献   

10.
高中《代数》第一册P181例3: 例3 设tgα、tgβ是一元二次方程ax~2+bx+c=0(b≠0)的两个根,求ctg(α+β)的值。解:在ax~2+bx+c=0中,a≠0,由一元二次方程根与系数之关系,得tgα+tgβ=-b/a,tgα·tgβ=c/a。而ctg(α+β)=1/tg(α+β)=(1-tgα·tgβ)/(tgα+tgβ)(*)由题设b≠0。故tgα+tgβ≠0,代入  相似文献   

11.
许多刊物都载文指出:两个一元二次方程 a_1x~2+b_1x+c_1=0,a_2x~2+b_2x+c_2=0(a_1a_2≠0)有一公共根条件是:当 a_1b_2≠a_2b_1时,(a_1c_2-a_2c_1)~2=(a_1b_2-a_2b_1)(b_1c_2-b_2c_1);当 a_1b_2=a_2b_1时,a_1:b_1:c_1=a_2:b_2:c_2有两个公共根.应用这些条件虽可解决一切公共根问题,但较难记忆,有时会带来较繁的运算.本文再提供另外三种思考方法.  相似文献   

12.
<正>对于二次函数f(x)=ax2+bx+c(a≠0)若有根x1,x2,则可写成零点式f(x)=a(x-x1)(x-x2)(a≠0).同理对一个三次函数f(x)=ax3+bx2+cx+d(a≠0)若有根x1,x2,x3,则可写成零点式f(x)=a(x-x1)(x-x2)(x-x3)(a≠0),其应用广泛,下面简单讨论其应用.1巧证不等式  相似文献   

13.
近年来,国内外数学竞赛中经常出现两个一元二次方程有公共根的一类问题。本文将探讨两个一元二次方程的系数满足什么条件时才有公共根(以下的讨论是在复数域中进行)。为此,我们给出定理两个一元二次方程 a_1x~2+b_1x+c_1=0 (Ⅰ)和a_2x~2+b_2x+c_2=0 (Ⅱ)有一个公共根的充分必要条件是证明设x_1和x_2是方程(Ⅰ)的两个根,  相似文献   

14.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

15.
对于实数系一元二次方程 ax2 +bx+c=0 (a≠ 0 ) ,如果 b2 - 4ac>0 ,那么方程有两个不相等的实数根 ;b2 - 4ac<0 ,那么方程没有实数根 .这就是一元二次方程根的判别式定理 ,我们把△ =b2 - 4ac叫做方程 ax2+bx+c=0 (a≠ 0 )的判别式 .这个定理的逆命题也是成立的 .判别式定理揭示了一元二次方程的系数与它的根之间的内在联系 ,它的应用主要有以下几个方面 .1 .判断方程根的性质 .在初中阶段我们研究的是实数系数的一元二次方程 ,有下列命题 :(1 )一元二次方程 ax2 +bx+c=0 (a≠ 0 )中 ,如果 a、 b、 c是有理数且△ =b2 - 4ac是一个完全平方数…  相似文献   

16.
对于实系数一元二次方程 ax~2+bx+c=0(a≠0) (*)当△=b~2-4ac≥0时有实根,且实根的分布情况常借助抛物线y=ax~2+bx+c (a≠0)与x轴的交点来实现的。当△=b~2-4ac<0时,方程(*)无实根。由于在复数范围内,任何一个实系数一元二次方程都有两个根,因此,当△=b~2-4ac<0时,方程(*)只有两个虚根且共轭。显然,这两个虚根对应的点不在x轴上。那么虚  相似文献   

17.
在一元二次方程ax2+bx+c=0(a≠0)中,常常隐含着a+b+c=0,此时方程的根究竟有什么特征呢?下面我们来研究这个问题。首先,为了能更清楚地看到方程与系数的关系,我们可以先由a+b+c=0,得b=-(a+c),代入方程消去b,得ax2-(a+c)x+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,哈,原来方程的两根为x1=1,x2=ca。由此,我们得到如下一个结论:当a+b+c=0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的一根为1,另一根为ca。运用这个简单的结论解决一些相关的问题十分简洁。请看:例1解方程:穴3姨-2雪x2+穴1-3姨-2姨雪x+2姨+1=0分析:直接用解一元二次方程的方法求解显然很…  相似文献   

18.
一元二次方程是初中代数的重要内容,它是一种只含有一个未知数,并且未知数的最高次数是2的整式方程.其一般形式为ax2+bx+c=0(a≠0).学习了一元二次方程根的意义、解法及其根的判别式后,灵活利用它们,可迅速地解答一些竞赛试题.一、灵活利用根的意义若x0是一元二次方程ax2+bx+c=0的根,那么ax_0~2+bx0+c=0,反之,若ax_0~2+bx0+c=0(a≠0),那么x0是一元二次方程ax2+bx+c=0的根.例1 已知a是方程x2-3x+1=0的根,则2a2-5a-2+3/a2+1的值是__.(1996年昆明市初中  相似文献   

19.
为了二次函数都知道:二次函数y=ax2+bx+c(a、b、c为常数,a≠0),当y=0时,则此函数形式化为ax2+bx+c=0(a≠0).即二次函数就化为一元二次方程了。所以一元二次方程实际上就是二次函数的特殊形式。因此,二次函数与x轴的交点问题就可以用一元二次方程根的分布和判定定理来解决。下面我们就用例子来谈谈二次函数与x轴的交点。  相似文献   

20.
等比性质:a/b=c/d=…=m/m(?)(a+c+…+m)/(b+d+…+n)=a/b.(b+d+…+n≠0) 这个性质在许多方面使用起来是方便的,但必须注意它的条件:b+d+…+n≠0.若a+d+…+n=0,则分式的分母为零,无意义. 例1 已知x/2=y/3=z/(-5)≠0,求(x+y+z)/(x-y)的值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号