首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对移相全桥DC/DC变换器,提出了电流型控制方案,通过控制移相角来调节输出电压.控制系统以数字控制器STM32F407VG为核心,采用数字位置式PID控制及软开关技术,完成一款100W的零电压(ZVS)DC/DC变换器.通过仿真实验和样机调试,验证了设计结果的正确性,证明此系统稳定,控制效果良好.  相似文献   

2.
双主动全桥DC/DC变换器在直流微电网中得到广泛应用,若采用传统单移相控制策略,会出现较大的回流功率现象,使器件的损耗增加.为降低双主动全桥DC/DC变换器的回流功率,使其输出效率得到提高,本文提出一种PWM与移相结合控制策略,该策略通过在双主动全桥DC/DC变换器的超前H桥或滞后H桥引入移相角,调节相应桥臂输出电压的占空比,进而控制系统的回流功率.在Matlab/Simulink仿真平台搭建仿真模型进行仿真实验,实验结果表明,与采用传统单移相控制策略相比,PWM与移相结合控制策略能降低回流功率,从而提高系统的工作效率.  相似文献   

3.
开关电源以其体积小、效率高等优点被广泛应用于计算机等各类电子设备中,小型化是其发展趋势之一.DC/DC 变换器是开关电源的核心部分.设计了一种基于TOPSwitch的反激式DC/DC变换器,主要包括主电路、控制电路、反馈电路等部分.对电路进行了制作与测试.实验结果表明,电路输出电压稳定、结构简单、体积较小、简化了设计过程.  相似文献   

4.
零电压准谐振开关电源的设计   总被引:1,自引:0,他引:1  
介绍了准谐振开关电源的组成、零电压准谐振变换器的工作原理、移相全桥两桥臂开关管实现ZVS的条件、移相全桥PWM控制和驱动的原理,研究了移相全桥ZVS变换器的控制和输出特性.利用UC3875控制器研制了3kW、6kW移相全桥零电压高频通信开关电源.  相似文献   

5.
分析了移相ZVSPWMDC/DC全桥变换器,并与以往的全桥PWM变换器进行区分;ZVSPWMDC/DC全桥变换器的4个开关管是零电压开关,减小了开关损耗,提高了开关频率;在Pspice软件中对ZVSPWMDC/DC全桥变换器主电路进行了仿真。仿真结果表明,移相ZVSPWMDC/DC全桥变换器实现了零电压开关,为全桥PWM变换器的高频化、小型化、轻量化提供了可能性依据。  相似文献   

6.
本文介绍了一种新型的高频DC/DC开关功率变换器的主电路拓扑结构及其相关元件参数的计算,并给出了主要仿真波形.该变换器增添了辅助谐振网络,在较大的负载范围内实现了开关器件的零电压软开关(ZVS).  相似文献   

7.
在Buck DC/DC变换器的分析与设计中,对开关工作时所形成的电压纹波的分析是至关重要的.为分析其输出电压纹波特性,讨论了Buck DC/DC变换器工作模式,以此为基础,建立了Buck DC/DC变换器的PSpice仿真模型,对工作在非连续电流模式(DCM)下的影响Buck变换器的输出电压纹波的有关因素进行了参数扫描分析.结果表明,输出电容对电压纹波影响较大,输入电压、负载、开关频率等的变化对电压纹波影响相对较小.该结论为Buck DC/DC变换器的设计和实现提供了一定的理论基础.  相似文献   

8.
设计并开发了一种DSP(digital signal processor)控制的全桥移相零电压DC-DC变换器实验装置.该实验装置以全桥DC-DC变换器为基础,采用移相PWM(pulse width modulation)控制技术,以DSP为控制器,实现各主功率管的零电压开关.分析了变换器的工作原理及系统设计方案.该实验装置具有技术先进、设计合理、安全可靠、操作简便等优点.在实验教学中学生反映良好,收到了较好的教学效果.  相似文献   

9.
针对心电图机DC/DC电源进行了设计。以TPS5450 DC/DC转换芯片和MC9S08QG8单片机为核心的多路DC电源,包括DC/DC转换电路,充电电路,升压电路,单片机电路等,通过该电路来输出多路电压,利用软件编程实现对输出的多路电压值实时检测,并交由上位机处理,从而保证系统的可靠性和稳定性。实验结果表明,该DC/DC开关电源设计符合心电图机电源的要求,运行安全稳定可靠。  相似文献   

10.
提出了一种能在全负载范围内实现零电压开关的改进型全桥移相ZVS—PWMDC/DC变换器.该电路简单高效,超前臂、滞后臂都能在很宽的范围实现软开关.介绍和分析了变换器的工作原理,最后给出了实验结果和两个主要波形,并做出了详细的说明.  相似文献   

11.
基于LM2575降压型DC/DC电源的设计   总被引:1,自引:0,他引:1  
设计了一款降压型DC/DC开关电源电路。分析和阐述了降压型转换器的电路拓扑和工作原理,根据系统性能设计了电路,同时对电源转换效率进行了仿真,其效率最高可达90%。该电源具有7 V-40 V电源电压输入范围,输出电压在1.23 V~20 V之间连续可调,经功率计测量、计算得电源转换效率达到85%以上,各项指标均达到了设计要求。电源整体电路满足小封装要求,可应用在MCU、DSP以及USB电源等便携式电子产品中。  相似文献   

12.
随着分布式光伏发电和光伏建筑一体化的发展,光伏直流供电系统将得到广泛的使用。在大功率光伏直流供电系统中,通过采用移相全桥变换器实现光伏能量的控制,用于实现最大功率点跟踪或者稳压。本文主要以光伏直流供电系统为研究对象,对光电互补并联供电系统中的全桥电路进行了最大功率点跟踪和稳压设计,采用DSP进行数字移相控制,重点对补偿网络进行了数字化设计,并进行了供电系统的软硬件设计。样机实验结果表明,采用数字移相的高频链光伏供电系统可以实现光伏阵列的最大功率点跟踪或者直流负载稳压。  相似文献   

13.
一种基于DC/DC变换器拓扑的逆变器研究   总被引:2,自引:0,他引:2  
本文针对传统的逆变器存在功率管直通和难以实现软开关的缺点 ,提出了一种新颖的基于DC/DC变换器拓扑的逆变器 .该逆变器由一个组合的Buck/Boost直直变换器和一个桥式电路构成 ,前级变换器输出可变的直流电压 ,后级电路将直流电压转换为交流输出 .该逆变器可以实现逆变桥功率管的软开关 .由于采用了能量反馈和单周期控制技术 ,变换器具有良好的动态性能 .本文对该变换器的电路拓扑和控制原理进行了详细分析 .电路仿真及样机实验结果表明该逆变器具有良好的性能  相似文献   

14.
介绍了一种高性能450W三路输出DC/DC变换器的设计原理,应用MATLAB6.5对电路进行了分析和仿真,给出了场效应管驱动电路,同时介绍了有关电源EMC技术指标和电磁兼容性设计并给出了EMC试验波形.试验结果表明,该DC/DC变换器设计合理.  相似文献   

15.
《实验技术与管理》2019,(12):107-112
为解决传统Boost电路升压能力不足、输入电流纹波大的问题,提出一种基于耦合电感的新型DC/DC变换器。在变换器的前级将耦合电感和电容相结合,实现零输入电流纹波;在变换器的后级利用耦合电感倍压单元扩展变换器的电压增益;引入二极管+电容的箝位电路,用以抑制漏感带来的电压尖峰,进而形成新的变换器拓扑结构。依据电路理论分析了变换器的工作原理和工作特性,并以光伏发电系统中的直流升压环节作为应用背景,在Simulink仿真平台上进行了实验验证和分析。实验结果表明:该变换器具有高电压增益、零输入纹波和低电压应力的特点。  相似文献   

16.
三相电压型AC/DC变换器功率控制策略是目前研究的热点。论述了基本三相电压型AC/DC变换器功率控制原理,并进行了仿真研究。对功率控制策略的几个问题进行了探讨,提出了改进建议。  相似文献   

17.
文章研究了智能控制技术在通信开关电源系统变换器中的应用。针对变换器为非线性、时变系统的特点,提出了一种模糊自适应PID控制算法。与传统的PID算法相比,该智能控制算法提高了开关电源的动态性能,减小了负载变化时的输出电压恢复时间和电源启动时输出电压的超调量。  相似文献   

18.
采用美国PowerIntegration(PI)公司的单片集成Dc—DC开关电源芯片DPA—Switch,设计并制作了一种DC—DC反激式高频开关电源,能够在12~48V电压等级蓄电池供电的电力电子系统中作为控制电源。介绍了以DPA—Switch系列DPA425芯片作为控制核心的开关电源的工作原理,着重讨论了工作频率达400kHz的高频变压器的设计与制作。研究结果表明,该电源能够在12-48V电压等级蓄电池系统中稳定工作,输出±15V(0.3A)和±5V(0.5A)四路直流电压,各路输出电压波动小于5%,满足设计要求,该开关电源具有较好的工程实用性。  相似文献   

19.
介绍了一种基于DSP的智能电源管理系统设计和实现方案。本系统以TI公司的TMS320LF2407A DSP为控制核心,主要由信号采集模块,电路调理模块,DSP处理模块,显示模块,键盘模块,DC-DC并联供电模块和辅助供电模块等组成。设计采用BUCK降压变换电路实现DC/DC变换,设计和制作了高效率的两路DC-DC变换器并联供电,此并联供电系统能够将36 V直流电压转化为12V直流电压,允许电流达到20 A长时间工作,并且两个并联开关电源模块的电流可按照默认分流比例分流和控制分配比例分流两种模式工作。另外系统进行了抗干扰设计,使其具有较好的抗干扰能力,保证系统可靠工作。  相似文献   

20.
提供一种线性直流稳压电源及漏电保护装置的设计方法,以芯片LM2577、LM2576和单片机为核心制作DC—DC转换器,提供额定输出电压为5V±0.05V、额定输出电流为1A的直流稳压电源。可以实现直流电压输入5.5~25V,输出电压保持在5V±0.05V,电压调整率SU≤1%;当输入电压为7V,直流稳压电源输出电流由1A减小到0.01A,负载调整率SL≤1%,并能够实现功率测量与实时显示,能够实现对模拟漏电支路的漏电保护动作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号