共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
5.
陈德华 《郴州师范高等专科学校学报》2000,21(4):33-36
介绍了如何利用空间直线x-x0/X=y-yo/Y=z-zo/Z上已知点Mo(xo,yo,zo)的任意性来求直线方程和直线的轨迹方程。 相似文献
6.
7.
8.
在高中数学中,直线是最基本的图形,直线的方程也是高中数学中最基本的方程。无论是从“形”的角度还是从“数”的角度,直线都是各种层次考察的主要内容之一。文章通过具体例题,从所给条件的不同出发,介绍几种常见的求直线方程的方法。 相似文献
9.
10.
命题 若一直线与抛物线 C:y2 =2 px(p>0 )相交于 A(x1 ,y1 ) ,B(x2 ,y2 )两点 ,则直线 AB的方程为 :2 px- (y1 y2 ) y y1 y2 =0 .证明 ∵点 A(x1 ,y1 ) ,B(x2 ,y2 )在抛物线 C:y2 =2 px上 ,∴ y21 =2 px1 ,y22 =2 px2 .作差得 :y21 - y22 =2 p(x1 - x2 ) ,当 x1 ≠ x2 时 ,k A B=y1 - y2x1 - x2 =2 py1 y2 ,∴直线 AB的方程为 :y- y1 =2 py1 y2(x- x1 ) ,即 2 px- (y1 y2 ) y y1 y2 =0 . 1当 x1 =x2 时 ,直线 AB为 :x=x1 ,此时y2 =- y1 ,故 1仍成立 .综上 ,命题成立 .特别地 :若 A(x1 ,y1 )与 B(x2 ,y2 )重合 ,即可得到过点 A… 相似文献
12.
陈启贵 《德阳教育学院学报》2006,20(2):87-88
“轴对称问题”是高中数学对称问题中的一个重要方面,它在函数和解析几何中都有广泛的应用。图形的基本元素是点,所以图形的对称性往往都转换为点关于直线的对称性来研究,因而点与直线成轴对称便成了轴对称中的重中之重了。研究对称性问题,解析法是一种重要手段,但在坐标平面内,求一已知点关于一直线的对称点的过程一般比较繁琐,就这类问题,有没有特殊规律可循呢? 相似文献
13.
求曲线的轨迹方程是解析几何的两个基本问题之一,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量问的关系. 相似文献
14.
王伟波 《河北理科教学研究》2013,(3):28-29
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2. 相似文献
15.
许少华 《数理天地(高中版)》2011,(6):14-15
1.定义法
例1 已知△ABC的顶点B、C的坐标分别为(-3,0),(3,0),AB和AC边上的中线交于G,并且|GF|+|GE|=5,求点G的轨迹方程. 相似文献
16.
17.
18.
引例已知直线li:aix+biy=c(i=1,2)均过点D(p,q),求过两点A1(a2,b1),A2(a2,b2)的直线方程. 相似文献
19.
20.