首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

2.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

3.
找准切点求切线例1求曲线(fx)=x3-3x2+2x过原点的切线方程.错解由于原点在曲线上,所以原点为切点.而f′(x)=3x2-6x+2,所以f′(0)=2.所以y-0=2(x-0),即所求切线方程为y=2x.  相似文献   

4.
题1已知曲线C:f(x)=x~3-x 2,求经过点P(1,2)的曲线C的切线方程.学生的解答雷同:解由f′(x)=3x~2-1得切线的斜率k=f′(1)=2,所以过点P(1,2)的曲线C的切线方程为y-2=2(x-1),即y=2x.分析解题时犯了审题不清的错误.此处所求的切线只说经过P点,并没有说P点一定是切点.故切线的斜率k与f′(1)不一定相等.  相似文献   

5.
1.问题高中新教材数学第三册114页谈到导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f’(x0),切线方程为: y-y0=f'(x0)(x-x0) (*)所以可利用导数求曲线的切线方程. 问题1 点P不在曲线上如何用导数方法求过点P的切线方程? 问题2 点P在曲线上,过点P作曲线的切线只有一条吗?即方程(*)惟一吗?  相似文献   

6.
导数是高中数学新教材的内容,它作为解题有力的工具使某些问题的求解变得简便.本文选取2004年全国的高考试题,举例介绍应用导数解答高考题的常见类型,供大家参考.  一、求曲线的切线例1  曲线 y=x3 -3x2 +1 在点(1,-1)处的切线方程为(  ).A.y=3x-4    B.y=-3x+2C.y=-4x+3 D.y=4x-5解析  由函数 f(x)=x3 -3x2 +1 导数为f′(x)=3x2-6x,f′(1)=-3,因此得(1,-1)处的切线方程为:y-(-1)=-3(x-1),即y=-3x+2.二、研究函数的单调性例2  已知a∈R,求函数 f(x)=x2eax 的单调区间.解析  函数 f(x)的导数 f′(x)= 2xeax +ax2e…  相似文献   

7.
一、混淆曲线y=f(x)在点P处的切线与过点P的切线例1已知曲线y=f(x)=(1/3)x~3上一点P(2,8/3),求过点P的切线方程。错解:f′(x)=x~2.设过点P的切线的斜率为k,则k=f′(2)=4.  相似文献   

8.
我们知道,f′(x0)的几何意义就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程可以表示为y-f(x0)=f′(x0)(x-x0).近几年来,随着高考对导数知识考查力度的不断加大,关于高次曲线、分式曲线、根式曲线、指数曲线、对数曲线、三角曲线、  相似文献   

9.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

10.
正导数的几何意义就是曲线在该点处的切线斜率,下面笔者结合近几年高考例析导数的几何意义的多维应用.维度1抓住切点究两线题1(2013·天津文19选摘)已知函数f(x)=4x3+3x2-6x,求曲线y=f(x)在点(0,f(0))处的切线方程.  相似文献   

11.
2007年全国卷(Ⅱ)第22题:已知函数f(x)=x3-x,(Ⅰ)求曲线y=f(x)在点M(t,f(t))处的切线方程;(Ⅱ)设a>0,如果过点(a,b)可作曲线y=f(x)的3条切线,证明:-a相似文献   

12.
三次方程的根的个数,该如何求呢?利用导数,便可以解决.下面讨论:方程ax3 bx2 cx d=0(a>0)的根.分析:函数y=ax3 bx2 cx d的图象与x轴有几个交点,方程便有几个根.解:由题意得:f′(x)=3ax2 2bx c∵a>0∴y=f′(x)图象开口向上,且Δ=4b2-12ac(1)当Δ>0时,即4b2-12ac>0,b2>3ac时∴方程f′(x)=0有两个不同的实根,x1,x2不妨设x1x2时f′(x)>0,x1相似文献   

13.
正三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f'(x)=3x2-1,则f'(x0)=3x20-1,过点P0的方程为y-y0=f'(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0).又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f'(-12)=-14,f'(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2(x-1).  相似文献   

14.
曲线的切线作法,方法很多,本文试图利用导数知识来求作曲线的切线,可供中学教师参考。函数y=f(x)在点x_o处的导数f′(x_o)的几何意义,就是曲线y=f(x)在点x_o处的切线的斜率。这样,曲线y=f(x)在点p(x_o,y_o,)处的切线是y-y_o=f′(x_o)(x-x_o)………(1) 法线是y-y_o=-1/f′(x_o)(x-x_o)即x-x_o=-f′(x_o)(y-y_o)………………(2)(1)式中令y=0,得出切线与x轴的交点T的横坐标为x_o-y_o/f′(x_o),同样,(2)式中令y=0,得出法线与x轴的交点N的横坐标为x_o f′(x_o)·y_o,切线PT在x轴上的射影为MT,在Rt△  相似文献   

15.
<正>1 题目呈现题目 (2022年高考北京卷第20题)已知函数f(x)=exln(x+1).(1)求曲线y=f(x)在点(0,f(0))处切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).本题主要考查导数的几何意义、利用导数研究函数的单调性及不等式的证明.  相似文献   

16.
函数在每年高考试题中都占有相当大的比重,从2004年高考题目中又可见到有拓宽函数命题领域的趋向.本文浅析高考函数命题的新趋势.一、三次函数闪亮登场由于导数的出现使三次函数问题呈现出新奇的亮点.【例1】已知函数f(x)=ax3-3x2-x-1在R上是减函数,求a的取值范围.解:由f(x)x∈R是减函数.故f′(x)=3ax2-6x-1<0当3ax2-6x-1<0]a<0且Δ=36 12a≤0∴a≤-3,即a∈(-∞,-3).【例2】已知函数f(x)=ax3 bx2-3x在x=±1处取得极值.(Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.解:(Ⅰ)f′(x)=3ax…  相似文献   

17.
求圆、椭圆、双曲线、抛物线的切线方程,思路明确,但其计算量往往令人“算而却步”,下面就上述四种曲线,来剖析它们切线方程的结构特征,以飨读者. 对于二次函数的切线方程我们是会求的,如求曲线y=px2(p≠0)在点(x2,y0)处的切线方程.斜率k=f1(x0)=2px0,由点斜式知:切线方程为y-y0=2px0(x-x0)(→)=y+y2/2=px·x0,即把原函数表达式中的y换成y+y0/2,把x2换成x·x0.  相似文献   

18.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

19.
众所周知,导数y′=f′(x0)的几何意义,是曲线y=f(x)以P(x0,f(x0))为切点所作切线的斜率.相对于传统知识而言,由导数所衍生出的"曲线的切线  相似文献   

20.
<正>在近几年的高考中,对导数应用的考察频频出现,应引起我们的重视,下面从三个角度谈一下导数的应用:一、利用导数研究方程根的分布解决此种题型的方法是根据题意构造函数,画出草图,研究极值点,寻找解题途径。+例:已知函数f(x)=x3-x.(1)求曲线y=f(x)在点M(t,f(t))处的切线方程;(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号