首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2007年全国高考数学广东省文、理科卷都有一道这样的选择题,并引起了舆论的关注(参见文[1]、[2]、[3]、[4]): 例1 如图1,是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为( ).[第一段]  相似文献   

2.
<正>文[1]中对文[2]中给出的定理:用k(k为正整数)种不同颜色给圈Cn的n个顶点着色,则相邻的顶点颜色不同的方法为{(k-1)n+(-1)n(k-1),n≥2,Fn,k=k,n=1,进行了研究,得到定理的推广:在圈Cn的n个顶点栽种k(k为正整数,k≤n)种不同颜色的花,相邻的顶点花的颜色不同,则共有Fn,kC1k·Fn,k-1种不同的栽种方法,其中  相似文献   

3.
<正>2007年的广东高考数学卷出现了这样一道看起来似乎与平时所学知识无关的非数学形式的考题:图1是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,  相似文献   

4.
对大正整数n求P(n)是件麻烦的工作,好在有些问题并不需要P(n)的真值,只需了解P(n)的范围或近似值就够了。文[1]曾用初等方法得到了P(n)的一个粗略估计式,一九八二年李文汉先生应用排列组合的方法对P(n)作估计改进了文[1]的结果。本文应用乘法原理对分拆种数P(n)进行估值,从而改进了文[3]的结果得到了P(n)的另一估式:对任意的正整数n有  相似文献   

5.
文[1]发现了四个由组合数的倒数组成的关系式,笔者又发现如下两个关系式: 定理1 设m,n,k为自然数,且,n≥m 1,则 证 由文[1]的定理4有即①下面反复使用公式①,第1次使用公式①得  相似文献   

6.
文[1]提出一个猜想:设xi>0(I=1,2,…,n),n≥3,n∑I=1xi=1,则∏n I=1(1/xi-xi)≥(n-1/n)n①. 文[2]用逐步调整法证明了①式.文[3]细致地探讨了①式的证明策略,用拆项法和磨光变换对①式给出了两种初等证明.  相似文献   

7.
正求数列{nxn}的前n项和,首先想到的是错位相减法,这是数列求和最常见方法之一.文[1]中作者归纳了数列{nxn}(x≠0且x≠1)的前n项和的另外四种求法,文[2]介绍了微积分方法求数列{nxn}的前n项和,这些方法开阔了师生的思维视野.受文[1]、文[2]的启发,本人对数列{nxn}的前n项和的求法继续补充,以供教学中参考.  相似文献   

8.
<正>文[1]在证明关于杨辉三角行列的过程中用到了一个引理,即: 取杨辉三角左腰第1条平行线上依次相邻的n个元素为主对角元;取这n个元素所在行及所在右腰平行线的交点元(交点无元素的以零代替)为元素,且保持每个元素原来的相对位置不变。这样得到的n阶行列式等于它右上角的那个数。即  相似文献   

9.
文[1]应用向量方法,建立了球内接多面体的“伪垂心”概念,并揭示了它的若干有趣的性质.笔者在研究这一问题时,发现了其新性质,为节省篇幅,本文沿用文[1]的有关定义及符号.从多面体V的n个顶点中,任意除去两个顶点A j,Ak(1≤j相似文献   

10.
文[1]研究了满足一类特殊函数方程、以2入为周期的函数f的周期性问题,给出了四个定理.文[2]在文[1]的基础上研究了文[1]中前三个定理的内在联系,并对文[1]的函数方程作了推广.本文对上述两篇文章的结果作了更进一步的推广——在函数方程方面给出了更一般的函数方程;在周期性万面,考虑以kλ为周期情况.  相似文献   

11.
文[1]、[2]分别给出了等差、等比数列的一个性质,文[3]又给出了等差数列前n项和的一个性质,笔者读后很感兴趣,进而对等差、等比数列及其前n项和进行了进一步的深入研究,发现了几个美妙性质. 文[1],[2],[3]给出的结论是: 性质1[1] 对于任意公差为d的等差数列{an},且an≠0,总有:(-1)0C0/a1+(-1)1C1/a2+(-1)2G/a3+…+(-1)iCin/ai+1+…+ (-1)nCnn/ an+1=n!dn/a1a2…an  相似文献   

12.
文 [1]得出H .Guggenheimer不等式rnahna+rnbhnb+rnchnc≥ 3 (n≥ 1) .①文 [2 ]将式①加强为rarbrchahbhc≥ 1.②本文将证明两个更强的结论 .命题 1 设△ABC的高和旁切圆 ,外接圆 ,内切圆半径分别为ha、hb、hc,ra、rb、rc,R ,r .在n≥ 1时 ,有rnahna+rnbhnb+rnchnc≥ 3 2R -r3rn.③引理[3 ]  设p为△ABC的半周长 ,则有∑ara=2p( 2R -r) .④其中“∑”表示循环和 .命题的证明 :由三角形中的恒等式aha=2pr等和式④ ,以及不等式 an+bn+cn3 ≥a +b +c3n 知rnahna+rnbhnb+rnchnc=∑rnahna=∑(ara) n(aha) n=∑(ara) n( 2pr) n ≥ 3( 2pr)…  相似文献   

13.
<正>文[1]研究了正多边形的同心圆(即圆心在正多边形中心的圆)的两个性质:(1)正多边形同心圆上的任意一点到各顶点距离的平方和是定值;(2)正多边形同心圆上任意一点到各边距离的平方和是定值.文[2]推广了文[1]的结论,得到了正多边形的同心椭圆(即椭圆中心在正多边形中心的椭圆)的两个性质:(1)设G为正n边形的中心,则以G为中心的椭圆上任意一点到正n边形的各顶点的距离的平方和与该点到椭圆两焦点距离的乘积的n倍之和为定值;(2)设G为正边形的中心,  相似文献   

14.
两个新的广义勾股数组   总被引:1,自引:0,他引:1  
文[1]介绍了拉氏广义勾股数组,并给出一个新的数组:[18,19,…,34|35,36,…,42];文[2]谓之[2n 1|n]型;并试图证其唯一性而未果,本文沿用文[2]的方法,又找到2个.设x 1为第一个数,求[n k|n]型广义勾股数,则  相似文献   

15.
马林 《中等数学》2005,(10):19-20
笔者在文[1]中解决了文[2]所述猜想:1a 1b 1c=a 1b c a21n 1 b21n 1 c21n 1=1a 1b 1c2n 1(n∈N ).并指出,其等价于下述命题.命题1若n∈N ,x、y、z均不为零,则x2n 1 y2n 1 z2n 1=(x y z)2n 1的充要条件是x、y、z中至少有两个互为相反数.最近发现,命题1的一个类比问题也成立.命题  相似文献   

16.
一、平面上任给n个点,每两点之间有一个距离,最大距离与最小距离的比maxA_iA_j/minA_iA_j记为λ_n,关于λ_n的下述讨论: 1.λ_n≥2~(1/2)/2[n~(1/2)] [1]中没有注意到函数[x]在x为整数处的不连续性,所以[1]中其实只对n不是完全平方数时证明了结论(见[1]中小文注)。 2.λ_n≥n/3~(1/2) [2]中原题为 maxP_iP_j≤(n/3)~(1/2)minP_iP_j。此不等式显然不成立。如取P_1、P_2,使P_1P_2  相似文献   

17.
文[1]指出,(18,…,34|35,…,42)广义勾股数组(以下按汉语拼音记为 GGS),并问这类 GGS 有无一般形式?文[2]称这类 GGS 为[2n+1|n]型,并认为(18,…,34|35,…,42)是[2n+1|n]型 GGS 中唯一的.事实上,(60,…,110|111,…,135)也是[2n+1|n]型 GGS,可见并不唯一.出错之因是由于误认为一个多项式,只有它是完全平方式时,其值才可能是平方数.比如 x+1,并非完全平方式,但当 x=8时,x+1=9是个平方数.下面回答“除拉钦斯基给出的 GGS 的一般形式外,有无其他 GGS 的一般形式”的问题.设(n,…,n+a|n+a+1,…,n+b)为 GGS,记 S_m=i~2,则 S_(n+b)-S_(n+a)=S_(n+a)-S_(n-1)①  相似文献   

18.
一、猜想能作更有意义的修正吗?在文[1]中,李韵老师提出了如下猜想:设a,b,c∈R,且a+b+c=1,n∈N~+,则(a(n+1)+b)/(b+c)+(b(n+1)+c)/(c+a)+(c(n+1)+b)/(a+b)≥(1+3~n)/(2·3~(n-1)).无独有偶,文[2]、[3]、[4]都用极限法和特殊值法指出该猜想是错误的.  相似文献   

19.
设n>m>1,p>0,a>O且a≠1,则有 性质1 log_(m v)(n p)相似文献   

20.
文[1]给人教版新教材(选修2-3)补充了超几何分布的期望和方差公式,读后颇受启发,但同时也发现了一些疏漏,本文提出笔者的一点拙见,供参考.为叙述方便,将文[1]中的超几何分布的定义抄录如下:一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为P(X=k)=CkMCCnNnN--kM,k=0,1,…,m,其中m=min{M,n}且n≤N,M≤N、n、M、N∈N*.称分布列X01…k…mPC0MCCnNnN-MC1MCCnNnN--1M…CkMCCnNnN--kM…CmMCCnNnN--mM为超几何分布.质疑从含3件次品的5件产品中,任取4件,其中次品数X还能取到0吗可见,上定义中的“k=0,1,…,m”确有不妥.为此,笔者又查阅了北师大版新教材,也没有明确的表述.事实上,k的初始值由产品中的正品数N-M来决定.当n≤N-M时,k=0,1,…,m,其中m=min{M,n};而当n>N-M时,k=a,a+1,…,m,其中a=n-(N-M).因此文[1]仅片面地研究了n≤N-M时超几何分布的期望和方差,那么对于n>N-M时超几何分布的期望和方差又是什么呢下面就作以补充.为证明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号