首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to explore whether a representational approach could impact on the scores that measure students’ understanding of mechanics and their ability to reason. The sample consisted of 24 students who were undergraduate, preservice physics teachers in the State University of Malang, Indonesia. The students were asked to represent a claim, provide evidence for it, and then, after further representational manipulations, refinement, discussion, and critical thought, to reflect on and confirm or modify their original case. Data analysis was based on the pretest–posttest scores and students’ responses to relevant phenomena during the course. The results showed that students’ reasoning ability significantly improved with a d-effect size of 2.58 for the technical aspects and 2.51 for the conceptual validity aspects, with the average normalized gain being 0.62 (upper–medium) for the two aspects. Students’ conceptual understanding of mechanics significantly improved with a d-effect size of about 2.50 and an average normalized gain of 0.63. Students’ competence in mechanics shifted significantly from an under competent level to mastery level. This paper addresses statistically previously untested issues in learning mechanics through a representational approach and does this in a culture that is quite different from what has been researched so far using student-generated representational learning as a reasoning tool for understanding and reasoning.  相似文献   

2.
3.
4.
The purpose of this study was to explore the impact of argumentation-based pedagogy on college students?? conceptual understanding of properties and behaviors of gases. The sample consists of 108 students (52 in the control group and 56 in the intervention group) drawn from 2 general chemistry college courses taught by the same instructor. Data were collected through pre- and post-tests. The results of the study show that the intervention group students performed significantly better than the control group students on the post-test. The intervention group students also showed significant increase in their test scores between pre- and post-test. While at least 80?% of the students in the intervention group abandoned their initial ideas on all of the 17 alternative conceptions that were identified by the authors but one, the percent of student abandoning their initial ideas in the control group was less than 50. The discussion focuses on the implications of these results for addressing students?? alternative conceptions, promoting the argumentation?Cpedagogy in college science courses and the challenges associated with the use of argumentation in college science classrooms.  相似文献   

5.
6.
The Electrochemistry topic is found to be difficult to learn due to its abstract concepts involving macroscopic, microscopic, and symbolic representation levels. Studies have shown that animation and simulation using information and communication technology (ICT) can help students to visualize and hence enhance their understanding in learning abstract chemistry topics. As a result, an interactive multimedia module with the pedagogical agent (IMMPA) named the EC Lab (Electrochemistry Lab) was developed in order to assist students in the learning of Electrochemistry topics. A non-equivalent pretest–posttest control group design investigation was carried out in order to gauge the effect of the IMMPA EC Lab on students’ understanding and motivation in the learning of Electrochemistry. Some 127 Form Four students from two secondary schools in one of the districts in Malaysia were involved in the study. Each school had one treatment group and one control group taught by the same Chemistry teacher. Instruments involved were a pre- and posttest, a pre- and post-motivation questionnaire, and the IMMPA EC Lab. Results showed a significant difference between the control groups and treatment groups in the understanding of concepts in the learning of Electrochemistry.  相似文献   

7.
Thermal physics is in the realm of everyday experience, underlies current environmental concerns, and underpins studies in sciences, health and engineering. In the state of NSW in Australia, the coverage of thermal topics in high school is minimal, and, hence, so is the conceptual understanding of students. This study takes a new approach at exploring conceptions of students with a qualitative analysis facilitated by NVivo complemented with reference to sociocultural ideas of learning. A 2-part pen and paper question was given to 598 first year university students of different educational backgrounds (and therefore physics expertise). ‘The Question’ was based on 2 familiar scenarios and required the selection of a concept first, followed by an explanation. The results showed that concepts were favoured based on a student’s everyday experience and their curriculum through high school, and some were more effective than others in making scientifically congruent responses. The reported thermal physics alternative conceptions were also examined in our sample, and students’ reasoning behind such conceptions indicate that some conceptions do not inhibit scientifically congruent responses whilst others do. The results implicate language and the everyday experiences of the student in the teaching and learning of thermal physics.  相似文献   

8.
Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are approached in different ways at the various stages of a typical engineering syllabus: at the beginning, they are mostly dealt with a static point of view, for example in mechanics, and are subsequently handled through dynamic analysis in control courses. In general, there is a little clarification of the differences between these concepts or the ways in which they are linked. We believe that this leads to much confusion and incomprehension among engineering students. Several studies have shown that students encounter difficulties when presented with simple familiar or academic static equilibrium cases in mechanics. Our study investigates students’ conceptions and misconceptions about equilibrium and stability through a series of questions about several innovative non-static situations. It reveals that the understanding of these notions is shaken when the systems being studied are placed in inertial or non-inertial moving reference frames. The students in our study were particularly uncertain about the existence of unstable equilibrium positions and had difficulty in differentiating between the two concepts. The results suggest that students use a velocity-based approach to explain such situations. A poor grasp of the above fundamental concepts may result from previous learning experiences. More specifically, certain difficulties seem to be directly linked to a lack of understanding of these concepts, while others are related to misconceptions arising from everyday experiences and the inappropriate use of physical examples in primary school.  相似文献   

9.
10.
A 44-item survey instrument was designed to determine secondary students?? views about how useful various specific actions related to reducing global warming might be, their willingness to undertake these various actions and the extent to which these 2 might be linked. The instrument was administered to students in grades 6??C?10 (n?=?768) from 4 large schools in metropolitan Delhi, India in which the teaching language was English. The findings indicated that this cohort of Indian students exhibited high levels of concern about climate change and strong willingness to act against global warming and in favour of the environment. The findings are tentatively compared with those from 2 similar survey studies conducted in Western contexts (Spain and Australia).  相似文献   

11.

In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of slopes in three dimensions (3D) is seen with the introduction of partial derivatives. The nature of the discussions indicates that authors seem to assume that students are able to naturally extend the concept of a 2D slope to 3D and correspondingly it is not necessary to explicitly present slopes in 3D. This article presents results comparing students that do not explicitly discuss slopes in 3D with students that explicitly discuss slopes in 3D as a precursor to discussing derivatives in 3D. The results indicate that students may, in fact, have significant difficulty extending the concept of a 2D slope to a 3D slope. And that the explicit presentation of slopes in 3D as a precursor to the presentation of derivatives in 3D may significantly improve student comprehension of topics of differentiation in multivariable calculus.

  相似文献   

12.
In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of slopes in three dimensions (3D) is seen with the introduction of partial derivatives. The nature of the discussions indicates that authors seem to assume that students are able to naturally extend the concept of a 2D slope to 3D and correspondingly it is not necessary to explicitly present slopes in 3D. This article presents results comparing students that do not explicitly discuss slopes in 3D with students that explicitly discuss slopes in 3D as a precursor to discussing derivatives in 3D. The results indicate that students may, in fact, have significant difficulty extending the concept of a 2D slope to a 3D slope. And that the explicit presentation of slopes in 3D as a precursor to the presentation of derivatives in 3D may significantly improve student comprehension of topics of differentiation in multivariable calculus.  相似文献   

13.
14.
The present study observed how Taiwanese college students’ epistemological beliefs about mathematics evolved during a year-long historical approach calculus course. On the basis of the characteristics of initial accounts, seven students were invited to participate in this study and were divided into two groups. An open-ended questionnaire, mathematics biographies, in-class reports, and follow-up semi-structured interviews served as instruments for identifying their epistemological beliefs. Furthermore, four randomly selected students from another calculus class constituted the control group. Results indicated that most of the students receiving this course exhibited relatively significant changes in their epistemological beliefs of mathematics, but trends and extents in their epistemological development varied across groups as well as individuals. This study identifies the potential relationships among the course features, initial beliefs, and the tendency of belief development, followed by a discussion of the mechanism of belief change and an afterthought on HPM approach.  相似文献   

15.
16.
In this study, we investigate the meaning students attribute to the structure of mathematical induction (MI) and the process of proof construction using mathematical induction in the context of a geometric recursion problem. Two hundred and thirteen 17-year-old students of an upper secondary school in Greece participated in the study. Students’ responses in 3 written tasks and the interviews with 18 of them are analyzed. Though MI is treated operationally in school, the students, when challenged, started to recognize the structural characteristics of MI. In the case of proof construction, we identified 2 types of transition from argumentation to proof, interwoven in the structure of the geometrical pattern. In the first type, MI was applied to the algebraic statement that derived from the direct translation of the geometrical situation. In the second type, MI was embedded functionally in the geometrical structure of the pattern.  相似文献   

17.
Most students think animals are more interesting than plants as a study topic believing that plants are inferior to animals because they are passive and unable to respond to external challenges, particularly biological invaders such as microorganisms and insect herbivores. The purpose of this study was to develop an inquiry-based learning unit, the Fighting Plant Learning Unit (FPLU), which focuses on plant defense responses to biological stimuli. The study also investigated students’ perceptions of the FPLU implemented in a constructivist classroom. A total of 31 Thai science majors from grade 12 participated in this study. Multiple data-gathering techniques (quantitative and qualitative) were employed: conceptual testing, concept mapping, the Constructivist Learning Environment Survey questionnaire and semi-structured interviews. It was found that from their active participation, the students developed a better conceptual understanding of plant defense mechanisms. In addition, they appeared to have positive attitudes toward the FPLU as evidenced by their preference for inquiry-based teaching in a constructivist learning environment. Finally, their perspectives on and appreciation of plants as active organisms had been favorably changed by the experience.  相似文献   

18.
The primary purpose of this study was to explore not only the effects of epistemic beliefs in science on science-text reading but also the gender differences in epistemic beliefs and the reading process. The interactions between gender and epistemic beliefs during reading were also explored. A total of 25 university students, 13 male and 12 female, were paid to participate in the study. The scientific epistemological beliefs (SEBs) questionnaire was used to probe the subjects’ epistemic beliefs in science, while the eye-tracking method was employed to record their science-text reading process. It was demonstrated that the participants in the study had developed sophisticated SEBs. Complicated SEBs were associated with higher cognitive attention to the reading of data-related information but less mental effort to fact, scientific explanations, and the microview photos. As for the gender difference, female students displayed less mental effort in comprehending scientific explanations, but attended more to data and the microview graphic. It is argued that female learners are better at processing textual information. Interactions between SEBs and gender were found and discussed.  相似文献   

19.
In this study, 241 young and middle‐aged adult college students completed the Aging Sexuality Knowledge and Attitude Scale, and provided information about their demographic and grandparental relationship qualities. Findings showed that greater age was associated with increased knowledge of elderly sexuality. Both the presence of contact and greater than average perceptions of closeness with at least one grandparent were predictive of more permissive attitudes toward elderly sexuality. Among the total sample, greater knowledge was related to more permissive attitudes toward elderly sexuality. However, the presence of contact with at least one grandparent moderated this relationship; young adults without grandparental contact presented a nonsignificant knowledge /attitude relationship. These findings suggest that future studies of younger age cohorts’ attitudes toward elderly sexuality should assess grandparental contact and relationship characteristics, as well as general demographic information such as chronological age. Health‐care educators also may need to reconsider the commonly held assumption that greater knowledge of elderly sexuality is associated exclusively with more permissive attitudes.  相似文献   

20.
The research reported in this case study explores the understanding of stoichiometry and related concepts of Thai science students in grades 10 and 11 after major national curriculum reforms. Students’ conceptions and alternative conceptions were investigated using a questionnaire - the Stoichiometry Concept Questionnaire (SCQ) (N = 97), which consists of 16 multiple-choice items, the choices for which respondents are required to provide reasons. The findings suggest that less than half of the students surveyed hold what is considered by a panel of experts to be a scientifically acceptable understanding for the conceptions investigated. The main student alternative conceptions are that one mole of all substances has a volume of 22.4 L at STP, that a solution that contains a greater mass of solute has the higher molar concentration, and that the limiting reagent is the reagent for which the lowest mass of reactant is present. Examination of students’ reasons suggests that they resort to the use of algorithms with little understanding of the underlying concepts. It thus seems the national educational reforms have not resulted in a sound understanding of some science concepts. It is recommended that curriculum developers should specify a need for conceptual understanding along with capability in numerical problem-solving in their learning objectives, and link this to assessment regimes that reward conceptual understanding. A need for on-going professional development seems essential if the intentions of the Thai curriculum reforms are to be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号