首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
辛姆生(Simson)定理三角形外接圆上任一点向三边(或其延长线)作垂线,三个垂足共线. 证明1.当△ABC为锐角三角形或钝角三角形时 建立如图1所示的平面直角坐标系,设B,C点的坐标为B(0,0),C(a,0),边AB所在直线方程为y=k1x,边AC所在直线方程为y=k2(x-a),边BC所在直线方程为y=0.从而,顶点A的坐标为方程组  相似文献   

2.
1 基础知识西姆松定理 过三角形外接圆上异于顶点的任意一点作三边的垂线 ,则三垂足共线 (此线称为西姆松线 ) .证明 :如图 1 ,设P为△ABC的外接圆上任一点 ,从P向三边BC、CA、AB所在直线作垂线 ,垂足分别为L、M、N .连结PA、PC ,由P、N、A、M四点共圆 ,有∠PMN =∠PAN =∠PAB =∠PCB =∠PCL .又P、M、C、L四点共圆 ,有∠PML =∠PCL .故∠PMN =∠PML ,即L、N、M三点共线 .注 :此定理有许多证法 .例如 ,如图 1 ,连结PB ,令∠PBC =α ,∠PCB =β ,∠PCM =γ ,则∠PAM =α ,∠PAN =β ,∠PBN =γ ,且BL =PB…  相似文献   

3.
定理(笛沙格Desargues)如果两个三点形对应顶点的连线交于一点,则对应边的交点在一直线上。 证明:设有三点形ABC与A′B′C′,对应顶点连线AA′,BB′,CC′交于一点O,对应边BC与B′C′的交点为X,CA与C′A′的交点为Y,AB与A′B′的交点为Z,要证X,Y,Z在一直线上。  相似文献   

4.
平面几何中,有一个关于点共线的著名定理: 梅氏(Menelaus)定理设D、E、F分别是△ABC三边AB、BC、CA所在直线上的点(不同于顶点),则D、E、F共线的充要条件是: AD/DB·BE/EC·CF/FA=1 在同一个平面内,有人已将它的必要性  相似文献   

5.
2003年1月15日上午8:00至12:30 一、设点I,H分别为锐角△ABC的内心和垂心,点B1,C1分别为边AC,AB的中点.已知射线B1I交边AB于点B2(B2≠B),射线C1I交AC的延长线于点C2,B2C2与BC相交于K,A1为△BHC的外心.试证:A,I,A1三点共线的充分必要条件是△BKB2和△CKC2的面积相等.  相似文献   

6.
西摩松定理告诉我们 ,三角形外接圆上任意一点在三角形三边上的射影是共线的(这条线叫西摩松线 ) .下面我们将要考虑的是 :在三角形三边上的射影共线的点 ,是否一定在三角形的外接圆上 ,即西摩松定理的逆命题是否为真 ?定理 如果一点在三角形三边上的射影共线 ,那么这点必在该三角形的外接圆上 .图 1证明 设 P为△ABC所在平面内的一点 ,且在边BC,CA,AB上的射影分别为 A1 ,B1 ,C1 .(1)若 P在外图 2接圆 O的内部 ,如图 1.A1 ,B1 ,C1 分别是 P在三边上的射影 ,连结 A1 C1 ,A1 B1 .设 AP,BP,CP分别交圆 O于A2 ,B2 ,C2 (为便于观…  相似文献   

7.
题目:已知A(-1,-1),B(1,3),C(2,5).求证:A、B、C三点共线.下面是笔者归纳总结得出的十种证明方法,在此奉献给同学们参考.证法一:利用斜率公式证明之.由斜率公式K=y2-y1x2-x1得:KAB=3-(-1)1-(-1)=2.KAC=5-(-1)2-(-1)=2∴KAB=KAC∵直线AB、直线AC有公共点A.∴A、B、C三点共线.证法二:利用两点间的距离公式证明之.∵|AB|=[1-(-1)]2+[3-(-1)]2=25|BC|=(2-1)2+(5-3)2=5|AC|=[2-(-1)]2+[5-(-1)]2=35∴|AB|+|BC|=|AC|∴A、B、C三点共线.证法三:利用定比分点坐标公式证明之.设A(-1,-1),B(1,3),C′(2,m)三点共线,且设AC′=λC′B…  相似文献   

8.
1 基础知识梅涅劳斯定理 设A′、B′、C′分别是△ABC的三边BC、CA、AB或其延长线上的点 .若A′、B′、C′三点共线 ,则 BA′A′C·CB′B′A·AC′C′B=1 .①证明 :如图 1 ,过A作AD∥C′A′交BC延长线于D ,则  CB′B′A=CA′A′D,AC′C′B =DA′A′B ,故  BA′A′C·CB′B′A·AC′C′B =BA′A′C·CA′A′D·DA′A′B=1 .梅涅劳斯定理的逆定理 设A′、B′、C′分别是△ABC的三边BC ,CA ,AB或其延长线上的点 ,若BA′A′C·CB′B′A·AC′C′B =1 ,②则A′、B′、C′三点共线 .证明 :设直线A…  相似文献   

9.
题目 设点I、H分别为锐角△ABC的内心和垂心 ,点B1 、C1 分别为边AC、AB的中点 .已知射线B1 I交边AB于点B2 (B2 ≠B) ,射线C1 I交AC的延长线于点C2 ,B2 C2与BC相交于K ,A1 为△BHC的外心 .试证 :A、I、A1 三点共线的充分必要条件是△BKB2和△CKC2 的面积相等 .1 试题的背景此题是以下面两个命题为背景改造而来的 .命题 1 三角形的两顶点与其内心、外心、垂心中的两心四点共圆的充分必要条件是另一顶点处的内角为 60° .证明 :当三心有两心重合 ,或三角形为直角三角形时 ,结论显然成立 .下面讨论三心两两不重合且三角形…  相似文献   

10.
一、△ABC的三边长分别为a,b,c,b<c,AD是角A的内角平分线,点D在边BC上. (1)求在线段AB,AC内分别存在点EF(不是顶点)满足BE=CF和∠BDE=∠CDF的充分必要条件(用角A、B、C表示);  相似文献   

11.
正平面中有关三点共线的一个重要的定理:定理1:设OA,OB为平面内不共线的两个向量,且OC=xOA+yOB(x,y∈R),则A,B,C共线的充要条件是x+y=1.文[1]探究了以上定理中将"x+y=1"中右边的"1"一般化后动点C的轨迹问题,得到了如下的结论:定理2:设O,A,B为平面α内不共线三点,OC=xOA+yOB(x,y∈R),过O与直线AB平行的直线为ι0,则满足x+y=k(k∈R)的动点C的轨迹是一条平行(重合)于ι0  相似文献   

12.
现行《立体几何》(甲种本)第52页第16题,是以笛沙格定理为依据编拟的一个立几命题。除此之外,在中学数学的有关教学参考书及习题集中,也可见到由笛沙格定理编拟的立几命题。如图一,已知不在同一平面内的两个三角形ABC和DEF,设连接对应顶点A、D和B、E及C、F得三直线相交于一点O,对应边AB和DE,BC和EF,CA和FD分别交于点M、N、P,证明:点M、N、P共线,反过来也成立[注]。此题的缜密性不足,原因在于;欧氏几何里不共面的两个三角形的对应顶点连线相交于一点,只是其对应边交点(若存正)共线的充分条件,而非必要条  相似文献   

13.
一法多用     
对形如x~2=y~2 k·z形式的结论的几何题,可把上式变形为k·z=(x y)(x-y),这样就可以应用圆的相交弦定理或圆的割线定理证明.下面就以例题来加以说明:例1:已知在△ABC中,∠B=2∠A,求证:AC~2=BC~2 BC·AB分析:由AC~2=BC~2 BC·AB变形得:BC·AB=AC~2-BC~2=(AC BC)(AC-BC)这样就可以以C为圆心,以BC或AC为半径作圆,利用圆的相交弦定理或圆的割线定理来证明.证明:如图1-(1)示:由于∠B=2∠A,则AC>BC,作以C为圆心,BC为半径的圆,分别交AC及其延长线于D、E,交AB于F点,则:AD=AC-CD=AC-BC,AE=AC CE=AC BC  相似文献   

14.
一、选择题(每小题5分共60分,四个选 项中,只有一个正确) 1.下列命题,正确个数有(  ) (1)若AB与CD是共线向量,则A、B、 C、D四点共线 (2)若AB+BC+CA=0,则A、B、C三 点共线 (3)λ∈R,则λa>|a| (4)平面内任意三个向量中的每一个向 量都可以用另外两个向量表示的线性组合有 (A)0个 (B)1个 (C)2个 (D)3个 2.与d=(12,5)平行的单位向量为 (  ) (A)(1213,-513)  (B)(-1213,-513) (C)(1213,513)或(-1213,-513) (D)(±1213,±513) 3.已知两点P1(-1,-6),P2(3,0),则 点P(-73,y)为有…  相似文献   

15.
首先我们给出下述定理. 定理若△ABC中,乙B笋900,AB笋AC,O(A、AB)奋交BC边或BC边的延长线于点D,则IABZ一ACzl=BC·CD.(1) F丫一、\/饭一、\二厂一、\ EL户~. (甲)(乙)(丙J 图l 定理的证明是十分容易的. 证明如图l(甲),AB相似文献   

16.
西姆松定理的内容为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线. 如图1,△ABC为⊙O的内接三角形,P为⊙O上一点,向△ABC三边各引垂线,垂足为 D、E、F,则此三点共线. 证明 联结PB.  相似文献   

17.
三点共线定理是指:如图(1),若∠BAD=α,∠CAD=β,AB=a.AC=b,AD=m,那么B、D、C三点共线的充要条件是sm(α β)/m=smβ/a smα/b证明:B、D、C三点共线=S△ABC=S△ABD=SABD S△ADC=1/2absin(α )=1/2amsina 1/2bmsinβ=sin(α )/m=sinβ/a十sinα/b图(1)三点共线定理(下称共线定理)虽然简单,却很重要,其用途广泛.下面结合一些几何名题、竞赛题谈谈共线定理在平几中的应用.  相似文献   

18.
1 定理定理1 若A,B,C三点共线,且■=λ■,O为任意一点,则有  相似文献   

19.
平面向量的一个主要应用是解决一些平面几何问题,塞瓦定理和梅涅劳斯定理是平面几何中的两个重要定理,人们自然想到如何利用平面向量的知识证明这两个定理,这里给出一种向量证法. 现将两个定理叙述如下: 塞瓦定理 如图1,设O是△ABC内任意一点,AO,BO,CO分别交对边于D,E,F,则 AF/FB· BD/DC · CE/EA=1.(1) 梅涅劳斯定理 如图1,设一直线与△ADC的边AC,AD及CD延长线分别交于E,O,B,则 AO/OD· DB/BC· CE/EA=1 (2) 为了证明定理,先给出一个简单的引理: 若→OA=λ→ OB+μ→ OC(λ,μ为常数),则A,B,C3点共线的充要条件是λ+μ=1.  相似文献   

20.
1定理 定理1若A、B、C三点共线(如图1),且→AC=λ→CB,O为任意一点,则有→OC=1+λ/→OA+λ→OB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号