首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、巧用分式的基本性质例 1.计算 x- 1x ÷ (x- 1x)。解 :原式 =x- 1xx- 1x(化为繁分式 )=(x- 1x )· x(x- 1x)· x(分式的基本性质 )=x- 1x2 - 1=1x+ 1。二、巧用逐步通分法例 2 .化简 11- x+ 11+ x+ 21+ x2 + 41+ x4 。分析 :若一次性完成通分 ,运算量很大 ,注意到 (1- x) (1+ x)=1- x2 ,而 (1- x2 ) (1+ x2 ) =1- x4 ,可以用逐步通分法化简。解 :原式 =21- x2 + 21+ x2 + 41+ x4=41- x4 + 41+ x4=81- x8。三、巧用运算律例 3.计算 11- x+ 8x71+ x8- 4 x31+ x4 - 2 x1+ x2 - 11+ x。分析 :可以先用加法交换律整理顺序如下 :11- x- 11+ x-…  相似文献   

2.
换元是初中代数学习中非常重要的一种解题方法 ,它指的是在解题过程中有意识地把一个代数式看成一个整体 ,用字母表示。灵活地应用这种方法 ,可使解题简易、迅捷。一、分解因式例 1.分解因式 (x2 - x) 2 - 8x2 + 8x+ 12。解 :设 x2 - x=z,那么原式 =(x2 - x) 2 - 8(x2 - x) + 12=z2 - 8z+ 12 =(z- 2 ) (z- 6 )=(x2 - x- 2 ) (x2 - x- 6 )=(x- 2 ) (x+ 1) (x- 3) (x+ 2 )。二、化简二次根式例 2 .化简 x z - z xx z + z x-z x + x zz x - x z。解 :设 x =a,z =b,那么 x=a2 ,z=b2 。原式 =a2 b- ab2a2 b+ ab2 - ab2 + a2 bab2 - a2 b=a- ba+ b…  相似文献   

3.
例 1 当x =1+19942 时 ,求多项式( 4x3-1997x-1994) 2 0 0 3的值 .分析 用直接代入的方法 ,可能导致计算繁琐甚至无法解出 ,而通过分析已知条件经过适当的变形可求出此值 .解 ∵x=1+19942 ,∴ 2x-1=1994,即( 2x -1) 2 =1994,4x2 -4x=1993 .∴ 4x3-1997x -1994=9x3-4x2 +4x2 -4x-193x -1994=x( 4x2 -4x) +( 4x2 -4x) -1993x-19 94=(x +1) ( 4x2 -4x) -1993x-1994=1993 (x +1) -1993x-1994=-1,∴ ( 4x3-1997x -1994) 2 0 0 3  =( -1) 2 0 0 3=-1.注意 :将已知条件适当的变形 ,然后再代入 ,这样可以简化运算步骤 ,起到化难为易的作用例 2 …  相似文献   

4.
不等式     
基础篇 课时一 不等式的性质疑难解析例 1  ( 1)已知 x∈ R,比较 x6 + 1与 x4 + x2 的大小 .( 2 )比较下列两组数的大小 .( A) 1999- 1998与 1998- 1997.( B) 2 0 0 4 - 2 0 0 3与 2 0 0 3- 2 0 0 2 .策略 采用作差法或作商法比较大小 .解 :( 1) ( x6 + 1) - ( x4 + x2 )=x6 - x4 - x2 + 1=x4( x2 - 1) - ( x2 - 1)=( x2 - 1) ( x4 - 1) =( x2 - 1) 2 ( x2 + 1) .当 x =± 1时 ,x6 + 1=x4 + x2 ,当 x≠± 1时 ,x6 + 1>x4 + x2 .( 2 ) 1999- 19981998- 1997=1998+ 19971999+ 1998.显然 1998+ 1997<1999+ 1998.∴ 1999- 19981998- 1997<…  相似文献   

5.
3 计算应用题1)计算下列极限 :(1)limx→ 3x- 3x+1(x2 - 2x - 3)(2 )limx→∞(x +1x - 3) -x(3)limx→∞(x - 1) 10 (2x +3) 512 (x- 2 ) 15(4)limx→ 01+x - 1sin2x解  (1)∵  x - 3x +1(x2 - 2x- 3) =x- 3x +1(x +1) (x- 3) =1x+1(x+1)∴ limx→ 3x- 3x+1(x2 - 2x - 3) =limx→ 31x+1(x+1) =18(2 )limx→∞(x +1x - 3) -x =limx→∞(x - 3x +1) x =limx→∞(1- 3x) x(1+1x) x =limx→∞((1- 3x) -x3 ) -3limx→∞(1+1x) x =e-3e =1e4(3)题目所给极限式分子的最高次项为 :x10 · (2x) 5=32x15分母的最高次项为 12x15,由此得 :limx→∞(…  相似文献   

6.
1 把值域当有界例 1 求证 :y=x2 - x 1x2 x 1的值域为[1/3,3].错证 因 (x2 - x 1x2 x 1- 13) (x2 - x 1x2 x 1-3) =(2 x2 - 4 x 2 ) (- 2 x2 - 4 x- 2 )(x2 x 1) 2 =-4 ( x-1) 2 ( x 1) 2( x2 x 1) 2 ≤ 0 ,所以 13≤x2 - x 1x2 x 1≤3(x∈R) ,即 y=x2 - x 1x2 x 1的值域为 [13,3].分析 上面证明显然是把值域当成了 y值有界 ,而并未证明 [1/3,3]是 y的值域 .因为作为值域 ,y值必须具备下面 2点 :(1) y∈[1/3,3];(2 ) y值充满区间 [1/3,3].下面证明 y=x2 - x 1x2 x 1函数值充满 [13,3]: y0 ∈ [13,3],将函数式变形 ,(y0 - 1) x2…  相似文献   

7.
在解某些含括号的高次方程时 ,有的同学常常见到括号就去掉 ,总习惯于将方程中的多项式按降幂排好后再设法求解 .岂不知 ,这样的“习惯”处理有时易造成简题繁解 .例 解方程 :(x2 -x -3 ) 2 -(x2 -x -3 ) =x +3 .解法 1:由原方程得(x4+x2 +9-2x3 -6x2 +6x) -(x2 -x -3 )=x +3 .去括号 ,整理得x4-2x3 -6x2 +6x +9=0 .拆项为x4-2x3 -3x2 -3x2 +6x +9=0 .则 (x2 -2x -3 ) (x2 -3 ) =0 .解得x1 =-1,x2 =3 ,x3 =3 ,x4=-3 .小结 :解法 1及其结果无疑都是正确的 ,但其求解过程较繁琐 ,尤其是其求解过程中的“拆项”有一定的难度 ,一些同学往往不能…  相似文献   

8.
在解一元一次方程时 ,灵活选择解题方法 ,可简化运算过程、提高解题速度 ,起到事半功倍的效果。下面举例说明。一、妙去括号例 1 解方程  34[43( 12 x - 14 ) - 8]=32 x + 1 分析 :因 34× 43=1 ,所以先去中括号简便。解 :去中括号得 :( 12 x - 14 ) - 6 =32 x + 1解得 :x =- 714 二、妙用整体合并例 2 解方程 x - 13[x - 13(x - 9) ]=19(x - 9) 分析 :因方程两边都含有 (x - 9) ,所以把含有 (x - 9)的项整体合并简便。解 :去中括号得 :x - 13x + 19(x - 9) =19(x - 9)移项、合并得例 3 解方程 x - 14 + 2x =5- 3(x - 1 )4 分析 :…  相似文献   

9.
前不久在教学中碰到这样一道习题:已知x1、x2是方程x2 x-1=0的两个根,求代数式(x12 2x1-1)·(x22 2x2-1)的值.班上大多数学生都是采用以下方法进行的: 原式:(x1x2)2 2x12x2-x12 2x1x22 4x1x2-2x1-x22-2x2 1=(x1x2)2 2x1x2(x1 x2)-(x1 x2)2 6x1x2-2(x1 x2) 1.  相似文献   

10.
一、配方法例 1 分解因式 :2 x3- x2 z- 4 x2 y 2 xyz 2 xy2- y2 z。解 :原式 =(2 x3- 4 x2 y 2 xy2 ) - (x2 z- 2 xyz y2 z) =2 x(x2 - 2 xy y2 ) - z(x2 - 2 xy y2 ) =(x2 -2 xy y2 ) (2 x- z) =(x- y) 2 (2 x- z)。二、拆项法例 2 分解因式 :x3- 3x 2。解 :原式 =x3- 3x- 1 3=(x3- 1 ) - (3x- 3)= (x- 1 ) (x2 x 1 ) - 3(x- 1 ) =(x- 1 ) 2 (x 2 )。注 :本题是通过拆常数项分解的 ,还可通过拆一次项或拆三次项分解 ,读者不妨一试。三、添项法例 3 分解因式 :x5 x 1。解 :原式 =(x5 - x2 ) x2 x 1 =x2 (x3- 1 ) (x2 x 1 ) =x2 (…  相似文献   

11.
一、拆项变换例 1 分解因式 :x3- 9x 8。解 :原式 =( x3- 1) ( - 9x 9) =( x- 1) ( x2 x 1) - 9( x- 1) =( x- 1) ( x2 x- 8)。注 :本题是通过将 8拆成 - 1和 9后 ,再用分组分解法分解 ;也可将 - 9x拆成 - x和 - 8x,或将x3拆成 9x3和 - 8x3分解。二、添项变换例 2 分解因式 :x4 y4 ( x y) 4。解 :原式 =x4 2 x2 y2 y4 -2 x2 y2 ( x y) 4=( x2 y2 ) 2 -2 x2 y2 ( x y) 4=〔( x y) 2 -2 xy〕2 - 2 x2 y2 ( x y) 4=2〔( x y) 4- 2 xy( x y) 2 x2 y2 〕=2〔( x y) 2 - xy〕2 =2 ( x2 xy y2 ) 2 。注 :本题是关于 x、y的对称式 ,…  相似文献   

12.
正一、多项式的乘法例1若(x2+nx+3)(x2-3x+m)的展开式中不含x2和x3项,求m和n的值.解析一些学生一看到题目,他们会毫不犹豫地利用多项式的乘法将(x2+nx+3)(x2-3x+m)展开,得(x2+nx+3)(x2-3x+m)=x4-3x3+mx2+nx3-3nx2+mnx+3x2-9x+3m=x4+(n-3)x3+(m-3n+3)x2+(mn-9)x+3m.  相似文献   

13.
分式是初中代数的重点内容之一 ,其运算综合性强、技巧性大 ,如果方法选取不当 ,不仅会使解题过程复杂化 ,而且出错率增高 ,更有甚者则会走投无路。下面通过例子来说明分式运算中的种种策略 ,供同学们学习参考。一、逐步通分例 1 .化简 :11 - x 11 x 21 x2 41 x4。分析 :若直接通分 ,其公分母为 (1 - x) (1 x) (1 x2 ) (1 x4) ,计算量很大 ,若逐步通分则可以简化运算。解 :原式 =1 x1 - x2 1 - x1 - x2 21 x2 41 x4=21 - x2 21 x2 41 x4=2 (1 x2 )1 - x4 2 (1 - x2 )1 - x4 41 x4=41 - x4 41 x4=81 - x8。二、分组通分…  相似文献   

14.
一、多项式的乘法 例1若(x2+nx+3)(x2-3x+m)的展开式中不含x2和x3项,求m和n的值.解析一些学生一看到题目,他们会毫不犹豫地利用多项式的乘法将(x2+nx+3)(x2-3x+m)展开,得(x2+nx+3)(x2-3x+m)=x4-3x3+mx2+nx3-3nx2+mnx+3x2-9x+3m=x4+(n-3)x3+(m-3n+3)x2+(mn-9)x+3m.  相似文献   

15.
有这样一道测试题:若函数f(x)=x3-12x在区间(-∞,a]上存在反函数,求a的最大值.同学们的解法大致有以下三种:解法1:∵f(x)=x3-12x∴f′(x)=3x2-12,∴由f′(x)>0,得x∈(-∞,-2)∪(2, ∞);由f′(x)<0,得x∈(-2,2).∴函数f(x)=x3-12x的单调增区间为(-∞,-2]、[2, ∞),单调减区间为[  相似文献   

16.
谢润 《宜宾学院学报》2005,5(6):12-13,25
本文研究了三维生态竞争模型x‘1=x1(1-x1-αx2-βx3),x‘2=x2(1-βx1-x2-αx3),x‘3=x3(1-αx1-βx2-x3)得到该系统的正平衡点的局部渐近稳定的充要条件和全局渐近稳定的充分条件。  相似文献   

17.
不等式     
强化主干课时一不等式的性质疑难解析例1(1)已知x∈R,比较x6+1与x4+x2的大小.(2)比较下列两组数的大小.(A)1999-1998与1998-1997.(B)2004-2003与2003-2002.策略采用作差法或作商法比较大小.解:(1)(x6+1)-(x4+x2)=x6-x4-x2+1=x4(x2-1)-(x2-1)=(x2-1)(x4-1)=(x2-1)2(x2+1).当x=±1时,x6+1=x4+x2,当x≠±1时,x6+1>x4+x2.(2)1999-19981998-1997=1998+19971999+1998.显然1998+1997<1999+1998.∴1999-19981998-1997<1,即1999-1998<1998-1997.同理2004-2003<2003-2002.评述:1.作差比较两式大小的一般步骤是:1作差(有时需要转化才可作差),2变形(进…  相似文献   

18.
例1 解不等式6-5x≥12-3x. 错解 移项得-5x 3x≥12-6合并同类项得,-2x≥6两边同除以-2得x≥-3.  相似文献   

19.
题目已知全集U=R,M={x|x-2/x^2-2x-3<0},求CuM.解法1:CuM={x|x-2/x^2-2x-3≥0}={x|-1<x≤2或x>3}.解法2:M={x|x-2/x^2-2x-3<0}={x|x<-1或2<x<3},则CuM={x|-1≤x≤2或x≥3}.评析:两个不同解法得到了两个不同的答案,  相似文献   

20.
一、利用导数求函数的单调区间应注意单调区间的写法 例1 求函数f(x)=x^4-2x^2+3的单调区间. 解f′(x)=4x^3-4x=4x(x+1)(x-1). 由f′(x)〉0,可得x〉1或-1〈x〈0; 由f′(x)〈0,可得x〈-1或0〈x〈1. ∴f(x)的增区间为[-1,0],[1,+∞);减区间为(-∞,-1],[0,1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号