首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1992年高考第(13)题是: 已知直线l_1和l_2夹角的平分线为y=x,如果l_1的方程是ax by c=0(ab>0),那么l_2的方程是 (A)bx ay c=0;(B)ax-by c=0; (C)bx ay-c=0;(D)bx-ay c=0。标准卷上选(A)。但明显,这四个选择支都是欠妥的。直线l_1:ax by c=0(ab>0),所以斜率k=-a/b<0,如图1所示,不妨固定平面上某一点A,则l_1只能  相似文献   

2.
陈宝义  李培华 《初中生》2015,(36):26-27
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)和一元二次方程ax2+bx+c=0有着密切的联系.对于二次函数或一元二次方程问题,我们依据题目的特征,灵活处理,则能使某些问题得到简捷、巧妙的解决. 抛物线y=ax2+bx+c与x轴的交点、一元二次方程ax2+bx+c=0的根、判别式△=b2-4ac的符号关系如下表: 一、求方程的根 例1(2014年柳州卷)小兰画了y=x2+ax+b的图像如图1所示,则关于x的方程x2+ax+b =0的解是().  相似文献   

3.
思考步骤(1)把y=ax2看成y=a(x+0)2+0,从中可直观地看出此函数的对称轴为直线x=0(即y轴),y最值=0.(2)把给出的二次函数y=ax2+bx+c通过配方变成y=[a(x+b/(2a))~2]+(4ac-b~2)/(4a),然后找出对称轴方程为x=-b/2a,y最值=(4ac-b~2)/4a.  相似文献   

4.
一、抛物线中的"四点"抛物线y=ax2+bx+c(a≠0)的"四点"是指抛物线与x轴的两个A交点,与y的交点及抛物线的顶点(如图).抛物线与x轴的两个交点是A(x1,0),B(x2,0).其中x1、x2是当y=0时,方程ax2+bx+c=0的两根;  相似文献   

5.
一、选择题1.抛物线y=x2-4x-4上的一个点是( ) A.(2,-8) B.(2,-2) C.(2,0) D.(-2,-8) 2.y=ax2 bx c(a≠0)的图象如图1所示,则点M(a,bc)在( ) A.第一象限B.第二象限C.第三象限D.第四象限3.已知一次函数y=ax c与二次函数y=ax2 bx c(a≠0),它们在同一坐标系中的大致图象是( )  相似文献   

6.
因为二次函数y=ax2+bx+c(a≠0)的图象与a,b,c,△有关系,所以由二次函数的大至图象就能确定二次函数中的系数和△的关系.现举例说明.例1已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论1b2-4ac<0,2ab>0,3a-b+c=0,44a+b=0,5当y=2时,x只能有一个值.其中正确是()  相似文献   

7.
若x1、x2是方程ax2+bx+c=O(a≠O)的两根,则ax_(1)~2+bx1+c=0和ax_(2)~2+bx2+c=0.方程与方程根的这一关系在解题中有着广泛的应用. 例1(1994年河南省中考题)以x2-3x-1=0的两个根的平方为根的一元二次方程是( ). (A)y2-11y+1=0 (B)y2+y-11=0  相似文献   

8.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

9.
<正>1另类方法事实1若抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,则(1)A、B、C三点不在同一直线上;(2)直线AB、AC、BC均不与x轴垂直.事实2平面直角坐标系中,A、B、C三点不在同一直线上,且直线AB、AC、BC均不与x轴垂直,则存在着唯一一条抛物线y=ax2+bx+c(a≠0),其图象过A、B、C三点.事实3如图1,平面直角坐标系中,A、B两点是等高点(即两点的纵坐标相等),抛物线y=ax2+bx+c(a≠0)过A、B两点.若抛物线开口向上,则抛物线经过图中的1区、5区、3区,不经过图中的4区、2区、6区;若抛物线开口向下,则抛物线经过图中的4区、2  相似文献   

10.
有许多竞赛题,如果用一元二次方程来解,往往会收到奇妙的效果.现举例说明. 例l 已知x1,x2是方程ax2+bx+c=0(a≠0)的两个根,且S1=x1 +x2,S2 =x12+x22,S3=x13 +x23,求aS3+bS2+cS1的值,(广东奥林匹克寒假集训试题) 解;因为x1,x2是方程ax2 +bx +c =0(a≠0)的两个根 所以:ax12+bx1+c=0 ax22+bx2+c=0 则:ax13 +bx12 +cx1 =0 ax23+bx22 +cx2 =0 所以:两式相加得:a(x13 +x23)+b(x12 +x22)+c(x1+x2)=0 即:aS3 +bS2 +cS1 =0.  相似文献   

11.
设直线y=kx+b与抛物线y=ax2+bx+c的交点为Q(x1,y1)、P(x2,y2),要求其交点的坐标,则需解方程组({)y=ax2+bx+c,y=kx+b.  相似文献   

12.
导数de应用     
一、曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0).例1垂直于直线2x-6y+1=0且与曲线y=x3-3x2-1相切的直线方程是.解由题意可知,所求直线的斜率k=-3.而由y'=3x2-6x=-3,解得x=1.∴切点坐标为(1,-3).∴所求的切线方程是3x+y=0.例2对于函数y=x3+ax2+bx+c,试确定函数的图像有与x轴平行的切线的条件,并确定该函数在R上是增函数的条件.解若函数的图像有与x轴平行的切线,则方程y'=0有实数解;若该函数在R上是增函数,则y'>0.∵y'=3x2+2ax+b,得驻=4a2-12b≥0,即a2≥3b,∴函数y=x3+ax2+bx+c的图像有与x轴平行的切线的条件是a2≥3b.又若y'=3x2+2ax…  相似文献   

13.
一、直线与圆锥曲线位置关系问题这种问题实际上是讨论直线方程和圆锥曲线方程组成的方程组是否有实解的问题.通过消元最终归结为讨论一元二次方程ax2+bx+c=0的解的个数问题.要注意a≠0与a=0两种情形,同时要特别重视判别式的作用.例1直线y=kx-1与抛物线(y+1)2=4(x-2)只有一个公共点,则k的值为.解(1)若k=0,y=-1,显然直线与(y+1)2=4(x-2)只有一个公共点.(2)若k≠0,由y=kx-1,(y+1)2=4(x-2),得k2x2-4x+8=0.∴驻=16-4k2×8=0,即k=±姨22.故k的值可能为0,-姨22,姨22.二、弦长问题若直线l与圆锥曲线的交点为A(x1,y1),B(x2,y2),由AB=(x2-x1)2+(y2-…  相似文献   

14.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

15.
一般而言,对于二次方程ax12+bx1+c=0,ax22+bx2+c=0(a,b,c为常数,且a≠0),其中的x1,x2可看作方程ax2+bx+c=0(a≠0)的两根的前提是x1≠x2,这是因为当x1=x2时,x1与x2并不能完全保证是方程ax2+bx+c=0的两根,此时存在两种可能:  相似文献   

16.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

17.
<正>已知一元二次方程解的情况,我们可以利用根的判别式求方程中参数的取值范围.而在学习了二次函数的图象和性质后,我们更习惯采用数形结合的方法来解决问题.下面通过一例说明和比较这两种方法的运用.例题二次函数y=ax2+bx+c(a≠0),(a,b,c为常数)的图象如图1所示.(1)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围;(2)若方程ax2+bx+c=k(a≠0)有两个相等的实数根,求k的值;(3)若方程ax2+bx+c=k(a≠0)没有实数根,求k的取值范围.  相似文献   

18.
活用一次方程或一次方程组的解可巧妙解题 ,现略举几例 ,供同学们学习时参考 .例 1 已知关于 x、y 的方程组3x - 4y=- 6 ,ax + 2 by=- 4和 3bx+ 2 ay=0 ,2 x- y=1有相同的解 ,求 a和 b的值 .分析 :两个方程组的解相同 ,则这个解必定同时适合这两个方程组中的四个方程 ,从而它必定是方程组( 1) 3x- 4y=- 6 ,2 x- y=1和 ( 2 ) ax+ 2 by=- 4,3bx+ 2 ay=0 的解 .因此 ,可有如下巧解 .解 :解方程组 3x- 4y=- 6 ,2 x- y=1. 得 x=2 ,y=3.把 x=2 ,y=3.代入 ( 2 )可得 2 a+ 6 b=- 4,6 a+ 6 b=0 .解之 ,得 a=1,b=- 1.例 2 王明和李芳同求方程 ax + b…  相似文献   

19.
大家知道,如果x1,x2(x1≠x2)是方程ax2 bx c=0(a≠0)的两个根,则有ax12 bx1 C=0,ax22 bx2 c=0. 反之,若ax12 bx1十c=0,ax22 bx2 c=0,x1≠x2,则x1,x2是方程ax2 bx c=0(a≠0)的两个根.  相似文献   

20.
无理函数 y =mx +n + lax2 +bx +c(mla??綒 0 )的值域已有好多文章通过举例进行了讨论 ,如文 [1]、[2 ]、[3],各自从不同的角度 ,用不同的方法作了分析 ,但没有给出一个通用的结论表达式 .本文通过换元、构造圆锥曲线 ,利用解析的方法分五种情形解决这一问题 .1 a >0 ,b2 - 4ac>0 ,l >0此时 ,函数y =mx +n +lax2 +bx +c的定义域为 {x|x≤x1或x≥x2 } ,其中x1、x2 是方程ax2 +bx +c =0的两个根 ,且x1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号