首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全等三角形是解决初中数学中图形问题的重要的基础知识和工具.通过构造全等三角形,整合问题中隐含的解题信息,是常见的解题策略.本文以一道典型的求角度问题为例,从边入手,使解题需要的全等三角形自然生成.一、问题及解题困惑题目如图1,在△ABC中,AB=AC,∠CAB为钝角,延长AB到点D,延长CA到点E,连结DE,恰有AD=BC=CE=DE,求∠BAC的度数.  相似文献   

2.
<正>全等三角形是解决初中数学中图形问题的重要的基础知识和工具.通过构造全等三角形,整合问题中隐含的解题信息,是常见的解题策略.本文以一道典型的求角度问题为例,从边入手,使解题需要的全等三角形自然生成.一、问题及解题困惑题目如图1,在△ABC中,AB=AC,∠CAB为钝角,延长AB到点D,延长CA到点E,连结DE,恰有AD=BC=CE=DE,求∠BAC的度数.解题困惑 (1)在弄清问题的已知条件后,多数学生发现要求角的度数,  相似文献   

3.
不少几何题,虽然在给定的图形中没有明显的全等三角形,但我们可根据题目的特征巧妙地构造全等三角形,从而找到证题的思路. 一、平移法例1 已知△ABC中,AB=AC,E在AB上,F在AC的延长线上,且BE=CF,EF交BC于D,求证:DE=DF 分析:欲证DE=DF,图中无明显的全等三角形,这时可考虑去构造,过E作EG∥AF,交BC于G,只须证△DCF(?)△DGE即可.  相似文献   

4.
三角形是几何中的一种基本图形.解一些几何问题时,若能通过添加辅助线构造出全等三角形,就能使问题化难为易.那么,解题时应该如何构造全等三角形呢?一、已知中线若遇到中线,一般可将其延长一倍来构造全等三角形.例1如图1,在△ABC中,AD是中线,BE与AD交于点F,且AE=EF.试说明线段A  相似文献   

5.
正在《初中数学竞赛讲座》中,给出了"法格勒洛问题"两种不同的解法,即:"费叶尔解法"和"许尔瓦兹解法".本文给出另一种不同的解法,以期对读者有一定的参考价值.法格勒洛问题在△ABC的三边分别取D、E、F三点所成的三角形称为△ABC的内接三角形,试在锐角△ABC的所有内接三角形  相似文献   

6.
<正>在初中几何试题中,我们时常遇到求解某条线段或某两条线段之和的最值问题.解决这类问题的常用方法是通过旋转变换作出恰当的辅助线,并借助全等三角形或相似三角形,将相关线段置于某一三角形中,再根据三角形的三边关系,即“三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边”来求解.下面举例说明.一、以三角形为载体1.构造全等三角形例1如图1,等边△ABC的边长为2,点D为BC边的中点,  相似文献   

7.
<正>在初中阶段的数学学习过程中,转化思想是最重要的思想方法之一,也是数学学习中的基本思想.通过转化思想,我们可以将不熟悉的复杂的问题转化为熟悉的简单的问题来解决.本文通过转化的思想策略,来破解"定角定周"三角形的求解方法,以期让学生了解此类"定角定周"三角形问题的解题技巧,同时也更深刻地体会到转化思想在解题过程中的精妙之处.一、"定角定周"三角形定义如图1,在△ABC中,△ABC的周长为定值,其中一个角∠A为定角,  相似文献   

8.
解答有关三角形的问题时,常常需要添加适当的辅助线.本文介绍三角形中5种常见辅助线的添加方法.一、延长中线构造全等三角形例1如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△AC D,得AC=A'B.这样将A  相似文献   

9.
人教版2007.9在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系.现分类加以说明.一、延长中线构造全等三角形例1如图1,AD是△ABC的中线,求证:AB AC>2AD.证明:延长AD至E,使AD=DE,连接CE.如图2.∵AD是△ABC的中线,∴BD=CD.又∵∠1=∠2,AD=DE,∴△ABD≌  相似文献   

10.
<正>"共底"三角形的构造如图1,在△ABC中,直线MN经过点A,交BC于点D,过点B、C分别作MN的垂线,垂足分别是E、F.则△ABD和△ACD构成"共底"三角形."共底"三角形的面积△ABC的面积就是"共底"△ABD和△ACD之和.过C作JQ∥MN,延长BE,交  相似文献   

11.
在几何计算或论证中,时常可见到与中点、中线有关的问题。合理巧妙地利用中点、中线这一条件作辅助线,构造全等三角形,可使问题迎刃而解。以下试举例说明之。例1.△ABC中,AB=6,AC=4,则中线AD的取值范围为。分析:已知两条线段与未知线段的位置关系分散,设法把它们联系在一起是解题的关键。略解:如图,延长AD至E,使得DE=DA,连结BE,易知△ADC△EDB,BE=AC=4。在△ABE中,由三角形三边关系有:2<2AD<10,从而1相似文献   

12.
<正>概念设P是△ABC内的任意一点,从该点向BC、CA、AB分别引垂线PA1、PB1、PC1(如图1),以它们的垂足A1、B1、C1为顶点的三角形A1B1C1称为△ABC关于"垂心"P的垂足三角形.问题对任一给定的△ABC与△ABC中给定的一个内点,第三个垂足三角形A3B3C3与△ABC相似吗?若相似,相似比能恰当地表示吗?纽伯格(J.Neuberg)已证明了第三个垂足三角形与原三角形是相似的.  相似文献   

13.
几何面积计算题是数学竞赛中的热点问题之一 .由于初一年级同学掌握的几何知识较少 ,解这类问题的难度较大 .下面我们先给出关于等高三角形或共底三角形面积比的两个性质 ,我们将看到 ,恰当地运用这两个性质建立方程或方程组 ,这类问题也不难解决 .性质 1 如图 1,△ ABD、△ ACD与△ ABC存在公共高 AH ,则由S△ =12 ×底×高 ,有S△ AB D∶ S△ ACD =BD∶ CD;S△ AB D∶ S△ AB C=BD∶ BC;S△ AC D∶ S△ A BC =CD∶ BC.这个性质可简述为等高三角形面积比等于底边的比 .图 1图 2性质 2 如图 2 ,在△ ABC中 ,点 D为 …  相似文献   

14.
某数学兴趣小组在讨论“边边角对应相等的两个三角形是否全等”时,讨论如下: 甲:这两个三角形不一定全等,如图1中的△ABC1及△ABC2,AB=AB,AC1=AC2,∠B=∠B,显然△ABC1与△ABC2并不全等. 乙:但是当这两个三角形都是直角三  相似文献   

15.
<正>"倍长中线"是一种常用的辅助线.但很多问题在倍长中线构建全等三角形的基础上,还需通过第二次构造全等才能解决.而第二次构造中,"等角"的证明是解决此类问题的难点.本文给出"倍长中线"法的五种导角策略,以作抛砖引玉.一、利用直角导角例1 如图1,在△ABC中,∠C=90°,D为AB的中点,点E,F分别在边AC,BC上,且ED⊥FD.求证:AE2+BF2+BF2=EF2=EF2.证明如图1,延长ED至点G,使DG=ED,连结BG,GF.  相似文献   

16.
解三角形题目时,我们常需要延长中线的一倍,构成全等三角形或平行四边形,使某些角或者线段的位置得到转移,从而使问题得到解决。一、证明线段相等例1 在△ABC中,AB=AC,E是AB的中点,  相似文献   

17.
等边三角形是数学学习的一个基本图形,两个等边三角形进行各种各样的拼接,形成比较复杂的图形.但只要掌握三角形全等这个武器,就能快速准确分解复杂图形,防止其他无关信息干扰,从而快速获得解题思路,提高解题的有效性,收到化繁为简、化难为易的良好效果.一、以一个点为顶点向外作两个等边三角形基本题型:如图1:△ABC与△ADE都是等边三角形,点D在AC上,求证:BD=EC证明∵△ABC与△ADE都是等边三角形∴BA=AC,AD=AE,∠BAC=∠DAE=60°  相似文献   

18.
<正>拿破仑不仅是十九世纪法国伟大的军事家、政治家,而且还是法兰西科学院院士.他对数学很感兴趣.即使是行军打仗,他也利用空闲时间,经常研究一些平面几何问题."拿破仑三角形"就是其中一例.拿破仑三角形,包括"外拿破仑三角形"和"内拿破仑三角形"两种.如果在△ABC的外侧,分别以△ABC的三条边为一边,作三个等边三角形,那么以这三个等边三角形的中心为顶点所构成的三角形就称为"外拿破仑三角形";如果在△ABC的内侧,分别以△ABC的三条边  相似文献   

19.
定义 如图1,△ADE与△ABC是位似三角形,我们把其中的一个三角形绕点A旋转一个角度如图2,我们把图1和图2这样的两个三角形称为"物、影三角形",即若把其中一个三角形看作是物体,则另一个三角形可以看成是这个三角形的影子.  相似文献   

20.
三角形的旋转、折叠、移动、对称问题成了近年来各地中考试题中的一道亮丽风景.这类题形式多样,需要采用数形结合的方法,并通过观察、操作、猜想、推理、计算等一系列数学探索活动才能获得解决.一、转1.平面上的旋转例1(济南市)如图1,在直角坐标系中,△ABC各顶点坐标分别为A(0,3√),B(-1,0),C(1,0),若△DEF各顶点坐标分别为D(3√,0),E(0,1),F(0,-1),则下列判断正确的是().xy(A)△DEF由△ABC绕O点顺时针旋转90°得到(B)△DEF由△ABC绕O点逆时针旋转90°得到(C)△DEF由△ABC绕O点顺时针旋转60°得到(D)△DEF由△ABC绕O点顺…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号