首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Ultrafiltration and a series of chromatographic steps were used to isolate and purify polysaccharides from Tremella aurantialba fruit bodies. Three crude fractions (TAP50w, TAP10-50w, and TAP1-10w), five semi-purified fractions (TAPA-TAPE), and one purified fraction (TAPA1) were obtained. A sulfated derivative of TAPA1 (TAPA1-s) was prepared by chemical modification. The immunostimulating activity of the polysaccharide fractions in vitro was determined using the mouse spleen lymphocyte proliferation assay. Of the three crude fractions tested, cell proliferation rates were increased most by TAP50w. Furthermore, TAPA1-s was markedly more stimulatory than TAPA1, indicating that sulfonation was an effective way to enhance the immunostimulating activity of polysaccharide.  相似文献   

2.
Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography(HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine(HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine(DEA), deisopropylatrazine(DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.  相似文献   

3.
The Rhodobacter capsulatus hemA gene, which encodes 5-aminolevulinic acid synthase (ALAS), was expressed in Escherichia coli Rosetta (DE3) and the enzymatic properties of the purified recombinant ALAS (RC-ALAS) were studied. Compared with ALASs encoded by hemA genes from Agrobacterium radiobacter (AR-ALAS) and Rhodobacter sphaeroides (RS-ALAS), the specific activity of RC-ALAS reached 198.2 U/mg, which was about 31.2% and 69.5% higher than those of AR-ALAS (151.1 U/mg) and RS-ALAS (116.9 U/mg), respectively. The optimum pH values and temperatures of the three above mentioned enzymes were all pH 7.5 and 37 °C, respectively. Moreover, RC-ALAS was more sensitive to pH, while the other two were sensitive to temperature. The effects of metals, ethylene diamine tetraacetic acid (EDTA), and sodium dodecyl sulfate (SDS) on the three ALASs were also investigated. The results indicate that they had the same effects on the activities of the three ALASs. SDS and metal ions such as Co2+, Zn2+, and Cu2+ strongly inhibited the activities of the ALASs, while Mn2+ exerted slight inhibition, and K+, Ca2+, Ba2+, Mg2+, or EDTA had no significant effect. The specificity constant of succinyl coenzyme A [(k cat/K m)S-CoA] of RC-ALAS was 1.4989, which was higher than those of AR-ALAS (0.7456) and RS-ALAS (1.1699), showing its high catalytic efficiency. The fed-batch fermentation was conducted using the recombinant strain containing the R. capsulatus hemA gene, and the yield of 5-aminolevulinic acid (ALA) achieved was 8.8 g/L (67 mmol/L) under the appropriate conditions.  相似文献   

4.
5.
The phytochrome B (PHYB) gene of Arabidopsis thaliana was introduced into cotton through Agrobacterium tumefaciens. Integration and expression of PHYB gene in cotton plants were confirmed by molecular evidence. Messenger RNA (mRNA) expression in one of the transgenic lines, QCC11, was much higher than those of control and other transgenic lines. Transgenic cotton plants showed more than a two-fold increase in photosynthetic rate and more than a four-fold increase in transpiration rate and stomatal conductance. The increase in photosynthetic rate led to a 46% increase in relative growth rate and an 18% increase in net assimilation rate. Data recorded up to two generations, both in the greenhouse and in the field, revealed that overexpression of Arabidopsis thaliana PHYB gene in transgenic cotton plants resulted in an increase in the production of cotton by improving the cotton plant growth, with 35% more yield. Moreover, the presence of the Arabidopsis thaliana PHYB gene caused pleiotropic effects like semi-dwarfism, decrease in apical dominance, and increase in boll size.  相似文献   

6.
Anoectochilus formosanus, commonly known as “Jewel Orchid”, is a Chinese folk medicine used to treat hypertension, diabetes, and heart disease. The existence of A. formosanus is currently threatened by habitat loss, human and animal consumption, etc. The highly potent medicinal activity of A. formosanus is due to its secondary metabolites, especially kinsenosides and flavonoids. This orchid also has a unique mycorrhizal relationship. Most adult orchids rely on endophytes for mineral nutrition and have complex interactions with them, which are related to plant growth, yield and changes in secondary metabolites. This study investigated the promoting role of F-23 fungus (genus Mycena) on the biomass and contents of kinsenosides and flavonoids of A. formosanus in pot culture. The following were observed after 10 weeks of symbiotic cultivation: increased shoot height, shoot dry weight, and leaf numbers by 16.6%, 31.3%, and 22.5%, respectively; increased contents of kinsenosides, isorhamnetin-3-O-β-d-rutinoside, and isorhamnetin-3-O-β-d-glucopyranoside by 85.5%, 226.1%, and 196.0%, respectively; some hyphae in epidermal cells dyed red and/or reddish brown by safranine; and, significantly reduced number of starch grains in cortical cells. Moreover, F-23 fungus significantly improved the kinsenoside and flavonoid contents of A. formosanus. These findings supported the reports that endophytes can alter the production of secondary metabolites in their plant hosts, although further physiological, genetic and ecological analyses are warranted.  相似文献   

7.
Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%?84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%?66.00%).  相似文献   

8.
Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号