首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30 h) at 60% maximal oxygen uptake(VO2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22 ml.kg-1 body mass) in the first hour of the recovery interval (n=8) and 500 ml just before exercise, followed by 250 ml every 20 min during exercise in the first (n=9) and second exercise bouts (n=9). Timed unstimulated saliva samples were collected at 10 min before exercise, after 48-50 min of exercise and during the last 2 min of exercise, at 1 h post exercise, 2 h post exercise (first exercise bout only), and 18 h post exercise (second exercise bout only). Venous blood samples were taken 5 min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2 h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90 min cycling at 60% VO2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

2.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30?h) at 60% maximal oxygen uptake ([Vdot]O2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22?ml?·?kg?1 body mass) in the first hour of the recovery interval (n = 8) and 500?ml just before exercise, followed by 250?ml every 20?min during exercise in the first (n = 9) and second exercise bouts (n = 9). Timed unstimulated saliva samples were collected at 10?min before exercise, after 48?–?50?min of exercise and during the last 2?min of exercise, at 1?h post exercise, 2?h post exercise (first exercise bout only), and 18?h post exercise (second exercise bout only). Venous blood samples were taken 5?min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2?h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90?min cycling at 60% [Vdot]O2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

3.
Ingesting carbohydrate beverages during prolonged exercise is associated with fewer numbers of circulating neutrophils and attenuated neutrophil functional responses, yet there is little information about the effect of fluid intake alone on immune responses to prolonged exercise. The aim of this study was to examine the influence of regular fluid ingestion compared with no fluid ingestion on plasma cortisol, circulating neutrophil and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses to prolonged cycling. In a randomized design, nine recreationally active males cycled for 2 h at 65% VO2max on two occasions with either fluid ingestion (lemon-flavoured water, fluid trial) before and during the exercise, or with no fluid intake at all (no fluid trial). Venous blood samples were obtained at rest, immediately after exercise and 1 h after exercise. Immediately after exercise, the plasma cortisol concentration was significantly higher in the no fluid trial than in the fluid trial (592 +/- 62 vs 670 +/- 63 nmol x l(-1), P < 0.05). Circulating numbers of neutrophils increased 4.5-fold (P < 0.01) and LPS-stimulated elastase release per neutrophil decreased 34 +/- 7% (P < 0.01) immediately after exercise; there were no differences between trials. These results suggest that in ambient environmental conditions, fluid ingestion alone has a negligible effect on circulating neutrophil and LPS-stimulated neutrophil degranulation responses to prolonged exercise.  相似文献   

4.
The aim of this study was to determine whether cyclists modify the pattern of force application to become more effective during a prolonged ride to exhaustion. Twelve competitive male cyclists completed a steady-rate exercise ride to exhaustion at 80% of their maximum power output at 90 rev x min(-1) on a cycle ergometer. Pedal force, pedal and crank angle data were collected from an instrumented bicycle for three pedalling cycles at the end of the first and final minutes of the exercise test with simultaneous video recording of the lower limbs. Kinematic and force data were combined to compute hip, knee and ankle joint moments. There were changes in the pattern of force application, joint kinematics and joint moments of force. Comparison of the first minute and the final minute ride revealed significantly increased peak effective force (340 +/- 65.0 and 377 +/- 74.8 N for the first and final minute, respectively; F1,11 = 7.44, P = 0.02), increased positive (28.4 +/- 4.5 and 30.5 +/- 4.8 N x s for the first and final minute, respectively; F1,11 = 7.80, P = 0.02) and negative angular impulses (-1.5 +/- 1.6 and -2.4 +/- 1.5 N x s for the first and final minute, respectively; F1,11 = 4.50, P = 0.06). Contrary to our initial assumptions, it would appear that riders became less effective during the recovery phase, which increased the demand for forces during the propulsive phase. Training the pattern of force application to improve effectiveness may be a useful strategy to prolong an endurance ride.  相似文献   

5.
The aim of this study was to assess the effect of an acute bout of high-intensity intermittent exercise on saliva IgA concentration and alpha-amylase activity, since this type of training is commonly incorporated into the training programmes of endurance athletes and games players. Eight well-trained male games players took part in the study. They reported to the laboratory after an overnight fast and performed a 60-min cycle exercise task consisting of twenty 1-min periods at 100% VO2max, each separated by 2 min recovery at 30% VO2max. Unstimulated whole saliva was collected over a 5-min period into pre-weighed tubes and analysed for total protein, saliva IgA and alpha-amylase. The saliva flow rate ranged from 0.08 to 1.40 ml x min(-1) at rest and was not significantly affected by the exercise. The performance of the intermittent exercise bout did not affect the saliva IgA concentration, but caused a five-fold increase in alpha-amylase activity (P<0.01 compared with pre-exercise) and a three-fold increase in total protein concentration (P<0.01). These returned to pre-exercise values within 2.5 h post-exercise. It has been suggested that IgA concentration should be expressed as the ratio to total protein concentration, to correct for any concentrating effect due to evaporative loss of saliva water when breathing through the mouth (as in strenuous exercise). The present study clearly demonstrates that this is not appropriate, since there is an increase in salivary protein secretion rate immediately after exercise (571+/-77 microg x min(-1) compared with 218+/-71 microg x min(-1) pre-exercise; P<0.05). The increased saliva alpha-amylase activity after exercise may improve the protective effect of saliva, since this enzyme is known to inhibit bacterial attachment to oral surfaces. The saliva alpha-amylase secretion rate was lower immediately pre-exercise than at any other instant, which may have been due to anticipatory psychological stress, although the subjects were all familiar with interval exercise. This emphasizes the need for true resting non-stressed control conditions in future studies of the effects of exercise on saliva constituents.  相似文献   

6.
7.
Many physically active individuals have undertaken intermittent fasting to reduce their daily caloric intake. However, abstaining from meals for a specific length of time may lead to the acute disturbance of highly carbohydrate-dependent exercise performance. The purpose of this study was to observe the effect of 10 days of intermittent fasting on high-intensity type exercises, Wingate anaerobic (WT) and prolonged high-intensity time-to-exhaustion (HIT) cycling test. Twenty participants were randomised into an intermittent fasting (FAS) and a control group (CON). One day after baseline data collection on Day-0 where participants consumed their recommended daily caloric intake (FAS?=?2500?±?143?kcal?day?1; CON?=?2492?±?20?kcal?day?1) served over a course of five meals, the FAS group consumed only four meals where 40% was restricted by the omission of lunch (FAS?=?1500?±?55?kcal?day?1). This diet was then continued for 10 days. Data on exercise performance and other dependent variables were collected on Day-2, -4, -6, -8 and -10. A reduction in WT power in the FAS group was observed on Day-2 (821.74?±?66.07?W) compared to Day-0 (847.63?±?95.94?W) with a moderate effect size (p?p?p?相似文献   

8.
Abstract

Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption ([Vdot]O2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

9.
Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption (VO2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

10.
11.
To reduce aerodynamic resistance cyclists lower their torso angle, concurrently reducing Peak Power Output (PPO). However, realistic torso angle changes in the range used by time trial cyclists have not yet been examined. Therefore the aim of this study was to investigate the effect of torso angle on physiological parameters and frontal area in different commonly used time trial positions. Nineteen well-trained male cyclists performed incremental tests on a cycle ergometer at five different torso angles: their preferred torso angle and at 0, 8, 16 and 24°. Oxygen uptake, carbon dioxide expiration, minute ventilation, gross efficiency, PPO, heart rate, cadence and frontal area were recorded. The frontal area provides an estimate of the aerodynamic drag. Overall, results showed that lower torso angles attenuated performance. Maximal values of all variables, attained in the incremental test, decreased with lower torso angles (P < 0.001). The 0° torso angle position significantly affected the metabolic and physiological variables compared to all other investigated positions. At constant submaximal intensities of 60, 70 and 80% PPO, all variables significantly increased with increasing intensity (P < 0.0001) and decreasing torso angle (P < 0.005). This study shows that for trained cyclists there should be a trade-off between the aerodynamic drag and physiological functioning.  相似文献   

12.
Abstract

The main aim of this study was to determine whether the use of an imposed or freely chosen crank rate would influence submaximal and peak physiological responses during arm crank ergometry. Fifteen physically active men participated in the study. Their mean age, height, and body mass were 25.9 (s = 6.2) years, 1.80 (s = 0.10) m, and 78.4 (s = 6.1) kg, respectively. The participants performed two incremental peak oxygen consumption ([Vdot]O2peak) tests using an electronically braked ergometer. One test was performed using an imposed crank rate of 80 rev · min?1, whereas in the other the participants used spontaneously chosen crank rates. The order in which the tests were performed was randomized, and they were separated by at least 2 days. Respiratory data were collected using an on-line gas analysis system, and fingertip capillary blood samples (~20 μl) were collected for the determination of blood lactate concentration. Heart rate was also recorded throughout the tests. Time to exhaustion was measured and peak aerobic power calculated. Submaximal data were analysed using separate two-way repeated-measures analyses of variance, while differences in peak values were analysed using separate paired t-tests. Variations in spontaneously chosen crank rate were assessed using a one-way analysis of variance with repeated measures. Agreement between the crank rate strategies for the assessment of peak values was examined by calculating intra-class correlation coefficients (ICC) and 95% limits of agreement (95% LoA). While considerable between-participant variations in spontaneously chosen crank rate were observed, the mean value was not different (P > 0.05) from the imposed crank rate of 80 rev · min?1 at any point. No differences (P > 0.05) were observed for submaximal data between crank strategies. Furthermore, mean peak minute power [158 (s = 20) vs. 158 (s = 18) W], time to exhaustion [739 (s = 118) vs. 727 (s = 111) s], and [Vdot]O2peak[3.09 (s = 0.38) vs. 3.04 (s = 0.34) l · min?1] were similar for the imposed and spontaneously chosen crank rates, respectively. However, the agreement for the assessment of [Vdot]O2peak (ICC = 0.78; 95% LoA = 0.04 ± 0.50 l · min?1) between the cranking strategies was considered unacceptable. Our results suggest that either an imposed or spontaneously chosen crank rate strategy can be used to examine physiological responses during arm crank ergometry, although it is recommended that the two crank strategies should not be used interchangeably.  相似文献   

13.
The main aim of this study was to determine whether the use of an imposed or freely chosen crank rate would influence submaximal and peak physiological responses during arm crank ergometry. Fifteen physically active men participated in the study. Their mean age, height, and body mass were 25.9 (s = 6.2) years, 1.80 (s = 0.10) m, and 78.4 (s = 6.1) kg, respectively. The participants performed two incremental peak oxygen consumption (VO(2peak)) tests using an electronically braked ergometer. One test was performed using an imposed crank rate of 80 rev x min(-1), whereas in the other the participants used spontaneously chosen crank rates. The order in which the tests were performed was randomized, and they were separated by at least 2 days. Respiratory data were collected using an on-line gas analysis system, and fingertip capillary blood samples ( approximately 20 microl) were collected for the determination of blood lactate concentration. Heart rate was also recorded throughout the tests. Time to exhaustion was measured and peak aerobic power calculated. Submaximal data were analysed using separate two-way repeated-measures analyses of variance, while differences in peak values were analysed using separate paired t-tests. Variations in spontaneously chosen crank rate were assessed using a one-way analysis of variance with repeated measures. Agreement between the crank rate strategies for the assessment of peak values was examined by calculating intra-class correlation coefficients (ICC) and 95% limits of agreement (95% LoA). While considerable between-participant variations in spontaneously chosen crank rate were observed, the mean value was not different (P > 0.05) from the imposed crank rate of 80 rev x min(-1) at any point. No differences (P > 0.05) were observed for submaximal data between crank strategies. Furthermore, mean peak minute power [158 (s = 20) vs. 158 (s = 18) W], time to exhaustion [739 (s = 118) vs. 727 (s = 111) s], and VO(2peak)[3.09 (s = 0.38) vs. 3.04 (s = 0.34) l x min(-1)] were similar for the imposed and spontaneously chosen crank rates, respectively. However, the agreement for the assessment of VO(2peak) (ICC = 0.78; 95% LoA = 0.04 +/- 0.50 l x min(-1)) between the cranking strategies was considered unacceptable. Our results suggest that either an imposed or spontaneously chosen crank rate strategy can be used to examine physiological responses during arm crank ergometry, although it is recommended that the two crank strategies should not be used interchangeably.  相似文献   

14.
颜凯  徐晓阳  邓树勋 《体育学刊》2002,9(2):115-117
通过对广东省田径队参加“2 0 0 0年全国田径锦标赛”优秀短跨项目运动员 4周大强度训练和比赛的跟踪调查 ,观察大强度长时间训练和比赛对其机体免疫机能的影响。结果表明 :长时间大强度训练使T淋巴系统功能降低 ,整个训练期CD4+ /CD8+ 值低于正常值 ,呈非常显著性差异 (P <0 .0 1) ;CD4+ 百分含量显著下降 (P <0 .0 5 ) ,但CD8+ 百分含量变化不大。经过调整和比赛后 ,所有指标均有升高趋势 ,但没有统计学意义。整个训练和比赛中 ,分泌型免疫球蛋白SIgA呈现对抗原刺激后的增加 ,训练后有显著性差异 (P <0 .0 5 )。结果提示 :高水平田径短跨项目运动员赛前大强度长时间训练会导致机体T淋巴细胞免疫系统功能下降 ,但是粘膜免疫系统功能在外界抗原刺激下有所升高 ,且训练后SIgA的变化与CD4+ 及CD4+ /CD8+ 值显著相关。因此 ,利用两者的变化可监测田径短跨项目运动员机体免疫系统功能的变化  相似文献   

15.
PurposeThis study aimed to evaluate the effectiveness of physical activity (PA) interrupting prolonged sitting (PS) on postprandial glycemia and insulin responses among adults.MethodsPubMed, EMBASE, Cochrane Library, Web of Science, CINAHL, PsycINFO, and the China National Knowledge Infrastructure databases were searched through September 30, 2020. Randomized controlled trials (RCTs) that examined the effect of all forms of PA interrupting PS on postprandial glycemia and/or insulin responses among adults without chronic diseases were included in this study. The risk of bias of included studies was evaluated based on the Cochrane tool. A network meta-analysis was performed to estimate the summary standardized mean differences (SMDs) with 95% confidence intervals (95%CIs) with random effects.ResultsThirty crossover RCTs were included in our review. These RCTs included 9 types of interventions that interrupted PS. When compared to PS by itself, light-intensity PA intermittent interrupting (LPA-INT) PS and moderate-intensity PA intermittent interrupting (MPA-INT) PS significantly lowered postprandial glycemia (SMD = –0.46, 95%CI: –0.70 to –0.21; SMD = –0.69, 95%CI: –1.00 to –0.37, respectively) and significantly reduced postprandial insulin response (SMD = –0.46, 95%CI: –0.66 to –0.26; SMD = –0.47, 95%CI: –0.77 to –0.17, respectively). Results of the clustered ranking plot indicated that MPA-INT was the most effective intervention in lowering postprandial glycemia and insulin responses.ConclusionReplacing PS with MPA-INT or LPA-INT has a positive effect in reducing postprandial glycemia and insulin responses, with MPA-INT being the optimal intervention strategy.  相似文献   

16.
The purpose of this study was to investigate the influence of midsole durometer on mechanical and hematological responses during a prolonged downhill run. Twenty-four men completed a 30-min downhill run (-12% grade) wearing either soft, medium, or hard midsole shoes. Data describing mean peak tibial acceleration (PTA), stride frequency, plasma free hemoglobin, hemoglobin concentration, hematocrit, and creatine kinase (CK) were collected. While there were no significant differences in PTA among midsole durometer shoes, PTA increased by 20% after the first 5 min of the run over all other time intervals during the run (p < .05). Hemolysis showed a 50.2% increase from prerun to postrun values (p <.05). CK increased from the prerun state to 24 hr after the run (p <. 05). Downhill running, irrespective of midsole durometer, showed increased levels of legshock, hemolysis, and muscle damage over values that are present in the literature for a level running protocol.  相似文献   

17.
Lack of benefit of warm up on prolonged intermittent-sprint performance has been proposed to be due to use of a pacing strategy by participants. To investigate this, twelve participants performed four cycle trials that consisted of either prolonged intermittent-sprint performance (80 min) or single-sprint performance (4 s), with or without a warm up. The first-sprint of intermittent-sprint performance was also assessed. No interaction effects (P > 0.05) were found between trials for intermittent-sprint performance for total work (J · kg(-1)), or percentage work and power decrement. Work done during the first-sprint of intermittent-sprint performance (no warm up) was less (P < 0.001) than the first-sprint of intermittent-sprint performance (warm up; effect size (ES) = 0.59) and both single-sprint trials (warm up and no warm up; ES = 0.91, 0.75, respectively). Peak power (W · kg(-1)) for single-sprint (warm up) was greater (P < 0.05) than single-sprint (no warm up), and the first-sprint of intermittent-sprint performance (warm up and no warm up). Warm up improved single-sprint performance and the first sprint of intermittent-sprint performance. Use of a pacing strategy probably resulted in similar intermittent-sprint performance between trials. These results suggest that team-sport players should perform a warm up at the start of a game or before substitution during a game.  相似文献   

18.
ABSTRACT

The systematic review and meta-analysis evaluated the effect of aerobic, resistance and combined exercise on RMR (kCal·day-1) and performed a methodological assessment of indirect calorimetry protocols within the included studies. Subgroup analyses included energy/diet restriction and body composition changes. Randomized control trials (RCTs), quasi – RCTs and cohort trials featuring a physical activity intervention of any form and duration excluding single exercise bouts were included. Participant exclusions included medical conditions impacting upon RMR, the elderly (≥65 years of age) or pregnant, lactating or post-menopausal women. The review was registered in the International Prospective Register of Systematic Reviews (CRD 42,017,058,503). 1669 articles were identified; 22 were included in the qualitative analysis and 18 were meta-analysed. Exercise interventions (aerobic and resistance exercise combined) did not increase resting metabolic rate (mean difference (MD): 74.6 kCal·day-1[95% CI: ?13.01, 161.33], P = 0.10). While there was no effect of aerobic exercise on RMR (MD: 81.65 kCal·day-1[95% CI: ?57.81, 221.10], P = 0.25), resistance exercise increased RMR compared to controls (MD: 96.17 kCal·day-1[95% CI: 45.17, 147.16], P = 0.0002). This systematic review effectively synthesises the effect of exercise interventions on RMR in comparison to controls; despite heterogenous methodologies and high risk of bias within included studies.  相似文献   

19.
Abstract

The aim of this study was to determine if inducing metabolic alkalosis would alter neuromuscular control after 50 min of standardized submaximal cycling. Eight trained male cyclists (mean age 32 years, s = 7; [Vdot]O2max 62 ml · kg?1 · min?1, s = 8) ingested capsules containing either CaCO3 (placebo) or NaHCO3 (0.3 g · kg?1 body mass) in eight doses over 2 h on two separate occasions, commencing 3 h before exercise. Participants performed three maximal isometric voluntary contractions (MVC) of the knee extensors while determining the central activation ratio by superimposing electrical stimulation both pre-ingestion and post-exercise, followed by a 50-s sustained maximal contraction in which force, EMG amplitude, and muscle fibre conduction velocity were assessed. Plasma pH, blood base excess, and plasma HCO3 were higher (P < 0.01) during the NaHCO3 trial. After cycling, muscle fibre conduction velocity was higher (P < 0.05) during the 50-s sustained maximal contraction with NaHCO3 than with placebo (5.1 m · s?1, s = 0.4 vs. 4.2 m · s?1, s = 0.4) while the EMG amplitude remained the same. Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.  相似文献   

20.
Altering torsional stiffness of cycling shoe soles may be a novel approach to reducing knee joint moments and overuse injuries during cycling. We set out to determine if the magnitude of three-dimensional knee moments were different between cycling shoe soles with different torsional stiffnesses. Eight trained male cyclists cycled at 90% lactate threshold power output in one of two cycling shoe conditions in a randomized crossover design. The shoe sole was considered torsionally flexible (FLEX) compared to a relatively stiffer (STIFF) sole. Gross efficiency (GE) and knee joint moments were quantified. No significant effect of shoe condition was seen in GE (21.4 ± 1.1% and 20.9 ± 1.6% for FLEX and STIFF, respectively, P = 0.12), nor in three-dimensional knee moments. 4 of the 8 subjects had reduced knee moments in at least 2 of the 3 moment directions. These “responders” were significantly shorter (1.73 ± 0.02 m vs 1.81 ± 0.04 m, P = 0.017) and had a higher relative maximal aerobic power (MAP) (4.6 ± 0.3 W?kg-1 vs 3.9 ± 0.3 W?kg-1, P = 0.024) compared to non-responders. These results suggest that certain shoe characteristics may influence certain individuals differently because these participants belong to different “functional groups”; certain individuals may respond positively to FLEX, while others may not. Further studies should test this proposed hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号