首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
托勒密定理 圆内接四边形两组对边乘积的和等于其两条对角线的乘积。 定理的证明这里略去。 通过构造圆内接四边形运用托勒密定理,常可轻松而直观地解决数学中的一些问  相似文献   

2.
<正>1问题的提出在圆内接四边形ABCD中,记边长AB=a,BC=b,CD=c,DA=d,对角线AC=e,BD=f.著名的托勒密(Ptolemy)定理指出:圆内接四边形的两组对边乘积之和等于两条对角线长的乘积,即ac+bd=ef.一个十分自然而且重要的问题是:对于圆内接四边形ABCD的两组邻边乘积之和,也就是ab+cd和bc+ad,能否像托勒密定理那样分别找到两条线段m、  相似文献   

3.
托勒密(Ptolemy)是公元三世纪古希腊数学家。他对圆内接四边形的性质有一个重要发现:“圆内接四边形两条对角线乘积等于两组对边乘积之和”。这个命题通常称为‘托勒密  相似文献   

4.
托勒密定理圆内接四边形中,两对边的乘积之和等于两对角线长的乘积.定理一语道出了圆内接四  相似文献   

5.
《数学奥林匹克中级读本(下)》(四川大学出版社出版,1991年10月第二版)一书中有这样一道例题(P75,例6): 如右图,设圆内接四边形ABCD的四边AB=a,BC=b,CD=c,DA=d,求对角线AC和BD的长(要求用a,b,c,d来表示)。书中在用余弦定理和圆内接四边形内对角之和为180°求出了两对角线之长后,有如下说明:“这例题用托勒密定理是不能求出圆内接四边形对角线的长。”然而我们说这说明是不正确的,用托勒密定理同样也能求出圆内接四边形的对角线长,现具体推理如下: 解法一:在弧ADC上取点M,使AM=CD=c,连MC,则△AMC≌△CDA(边、角、边),从而MC=AD=d,对圆内接四边形ABCD及  相似文献   

6.
托勒密定理托勒密定理:圆内接四边形的对边积之和等于对角线之积.这个定理的证法有很多,可采用面积证法或余弦定理等方法,这里采用的是相似三角形法,也是比较简单的一种证法.  相似文献   

7.
托勒密定理是关于圆内接四边形的一个性质,推广得到圆内接六边形的一个类似结论,进而得到圆内接2n边形(n≥2)的一个结论。  相似文献   

8.
本文给出两个著名定理:西姆松线定理与托勒密定理等价性的证明.为方便,将两个定理写在下面:托勒密定理:若四边形ABCD是圆内接四边形,则AB·CD AD·BC=AC·BD.西姆松线定理:三角形外接圆上任一点在三边所在直线上的射影共线.1 用西姆松线定理证明托勒密定理文[1]已给出证明,简述如下:证明 ABCD是任一凸四边形,连接AC,如图,过D向△ABC各边作垂线,垂足分别为 C_1、A_1、B_1,连结C_1B_1,B_1A_1,由西姆松线定理得:  相似文献   

9.
托勒密定理在圆内接四边形中,两条对角线长度之积等于两对对边乘积之和.  相似文献   

10.
徐道 《中等数学》2009,(2):21-22
托勒密(Ptolemy)定理圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.  相似文献   

11.
初等平面几何中定理、性质、结论较多,运用广泛,在数学竞赛中,证明几何题方法灵活机动,可从代数、几何、三角知识作深入性思考,现结合托勒密定理证明作简单阐述,供参考.托勒密(Ptolemy)定理:圆内接四边形的两组对边的乘积之和等于两对角线的乘积.已知:四边形ABCD内接于圆O.证明:AB·CD+AD·BC=AC·BD.证法分析1此定理从几何角度证明方法较多,从中选  相似文献   

12.
定理一(托勒密定理) 圆内接凸四边形的两双对边的乘积的和等于两条对角线的乘积。如果把一点看成是(?)为零的圆,两点之间的线段长看成是两圆的外公切线长。这样,可以把这个四边形的四个顶点看成是分  相似文献   

13.
托勒密定理在解决初中平面几何及代数的某些问题时有它独到之处,今举例如下一构造特殊的圆内接四边形解(证)三角形问题大家知道,等腰梯形,矩形(正方形)必内接于圃,而任何三角形都有一个外接圆,据题意我们总可在三角形的外接圆上构造出一个等腰梯  相似文献   

14.
托勒密定理的一个推广   总被引:1,自引:0,他引:1  
1引言托勒密(Ptolemy)定理在圆内接四边形中,两对角线之积等于两对对边之积的和.即设ABCD是圆的内接四边形,则AB·CD+BC·AD=AC·BD①文[1]简述了托勒密定理的历史与作用,并提及1866年Casey对托勒密定理的一个推广.Casey定理[2]四圆O1、O2、O3、O4同时内切于圆O,以aij表示圆Oi、Oj的外公切线长,则a12·a34+a23·a14=a13·a24②由于点可以看成是退化的圆,当Casey定理中的四圆O1、O2、O3、O4的半径均为零时,②式变为①式,所以Casey定理确实是托勒密定理的推广.本文将Casey定理中四个内切于圆O的圆O1、O2、O3、O4的部分或全部…  相似文献   

15.
托勒密定理是联系四边形和圆的一个重要定理。它是这样叙述的,圆内接四边形ABCD的两组对边乘积之和等于两对角线乘积。即: AC·BD=AB·CD AD·BC 通常证法是设法将①式左边分为两项,使与右边两项对应相等。 设在AC上取一点P,使AC=AP PC,代入①式左边得:AC·BD=AP·BD PC·BD.  相似文献   

16.
<正>在今年的各地模考卷中,以托勒密定理为背景的客观题频频出现,它们构思精巧、韵味十足、魅力四射,是考查考生的学科素养和关键能力的极好素材.本文精选其中六例加以剖析,旨在探索题型规律,揭示解题方法.例1 古希腊数学家托勒密于公元150年在他的名著《数学汇编》里给出了托勒密定理,即圆的内接凸四边形的两对对边乘积的和等于两条对角线的乘积.已知AC,BD为圆的内接四边形ABCD的两条对角线,  相似文献   

17.
托勒密(Ptolemy)是公元二世纪时希腊数学家,三角术创始人之一。托勒密定理(下文简称 P 定理)就是他发现的一个著名平面几何定理。这个定理内容是:圆内接四边形中两双对边积的和等于两对角线的积。托勒密曾以此定理为理论基础,造出了世界上第一张弦表。一、P 定理及其逆定理的证明P 定理有多种证法,这里再提出一个较简单的证法,供参考。如图一,四边形 ABCD 内接于圆,对角线 AC、BD 交于 E,求证:  相似文献   

18.
本文介绍Ptolemy定理、逆定理及其推论,并把该定理从圆内接四边形推演到任意圆内接多边形;从圆内接正三角形、正方形……以至推演到圆内接正多边形的一些性质命题。这样定理运用就更广泛。更能认识定理的优越性。  相似文献   

19.
文章以几道试题为例,介绍了托勒密定理在求解与圆内接四边形有关的高考模拟试题中的应用.  相似文献   

20.
不少初等几何版本都载有托勒密定理,但对其逆及应用却未见涉及。本文除给出该定理之逆的证明外,并对其应用予以初步整理,以期对该部分内容的教学能有一点助益。托勒密定理及其逆可以概括成如下定理:凸四边形ABCD是圆内接四边形的充要条件是两双对边积的和等于两对角线的积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号