首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance.  相似文献   

2.
The speed attained by a track cyclist is strongly influenced by aerodynamic drag, being the major retarding force in track events of more than 200 m. The aims of this study were to determine the effect of changes in shoulder and torso angles on the aerodynamic drag and power output of a track cyclist. The drag of three competitive track cyclists was measured in a wind tunnel at 40 kph. Changes in shoulder and torso angles were made using a custom adjustable handlebar setup. The power output was measured for each position using an SRM Power Meter. The power required by each athlete to maintain a specific speed in each position was calculated, which enabled the surplus power in each position to be determined. The results showed that torso angle influenced the drag area and shoulder angle influenced the power output, and that a low torso angle and middle shoulder angle optimised the surplus power. However, the lowest possible torso angle was not always the best position. Although differences between individual riders was seen, there was a strong correlation between torso angle and drag area.  相似文献   

3.
A review of existing mathematical models for velodrome cycling suggests that cyclists and cycling coaches could benefit from an improved simulation tool. A continuous mathematical model for cycling has been developed that includes calculated slip and steering angles and, therefore, allows for resulting variation in rolling resistance. The model focuses on aspects that are particular, but not unique, to velodrome cycling but could be used for any cycling event. Validation of the model is provided by power meter, wheel speed and timing data obtained from two different studies and eight different athletes. The model is shown to predict the lap by lap performance of six elite female athletes to an average accuracy of 0.36% and the finishing times of two elite athletes competing in a 3-km individual pursuit track cycling event to an average accuracy of 0.20%. Possible reasons for these errors are presented. The impact of speed on steering input is discussed as an example application of the model.  相似文献   

4.
Diurnal variation in cycling performance: influence of warm-up   总被引:2,自引:0,他引:2  
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in "morningness". Eight male cyclists (mean +/- s: age = 24.9 +/- 3.5 years, peak power output = 319 +/- 34 W, chronotype = 39 +/- 6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30 h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30 s), but mean cycling time was still significantly slower at 07:30 h than at 17:30 h after the warm-up (95% CI for difference = 33 to 66 s). Intra-aural temperature increased as the time trial progressed (P < 0.0005) and was significantly higher throughout the time trials at 17:30 h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30 h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards 'morningness', and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

5.
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in “morningness”. Eight male cyclists (mean?±?s: age = 24.9?±?3.5 years, peak power output = 319?±?34?W, chronotype = 39?±?6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30?h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30?s), but mean cycling time was still significantly slower at 07:30?h than at 17:30?h after the warm-up (95% CI for difference = 33 to 66?s). Intra-aural temperature increased as the time trial progressed (P <?0.0005) and was significantly higher throughout the time trials at 17:30?h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30?h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards ‘morningness’, and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

6.
The streamline is a basic position for competitive swimming starts and turns and has been used in many studies on resistiveforces. However, there is a wide variety of theoretical interpretations in these studies, leading to diverse and questionable conclusions. The purpose of this study was to determine performance level differences in the streamline position using a meta-analysis. Faster swimmers had a significantly lower coefficient of drag (Cd) than slower swimmers, (M = .57, z = 4.30, p < . 001, SE = .13, 95 % CI = .32-.82) and, therefore, a more effective streamline position. The results support considering all the related variables in a study ofpassive drag and using the Cd to discriminate between performance levels in swimming.  相似文献   

7.
8.
在研究分析高校速滑课考试中常用的完整技评法存在问题的基础上,运用文献资料、专家访问、数理统计等方法,实践探索了一种新颖、科学、公正的技评方法,即分解技评法.分解技评法不但可以提高技评的准确性、公正性,而且可以对学生的学习过程和个人技术特点进行记录,从而达到增强教学效果的目的.通过调节权重或等级赋值,可增加分数的离散性,并促使分数趋于正态分布.  相似文献   

9.
An analysis was conducted to identify sources of true and error variance in measuring swimming drag force to draw valid conclusions about performance factor effects. Passive drag studies were grouped according to methodological differences: tow line in pool, tow line in flume, and carriage in tow tank. Active drag studies were grouped according to the theoretical basis: added and/or subtracted drag (AAS), added drag with equal power assumption (AAE), and no added drag (ANA). Data from 36 studies were examined using frequency distributions and meta-analytic procedures. It was concluded that two active methods (AAE and ANA) had sources of systematic error and that one active method (AAS) measured an effect that was different from that measured by passive methods. Consistency in drag coefficient (Cd) values across all three passive methods made it possible to determine the effects of performance factors.  相似文献   

10.
This study aimed to establish the nature of lower extremity intra-limb coordination variability in cycling and to investigate the coordinative adaptations that occur in response to changes in cadence and work rate. Six trained and six untrained males performed nine pedalling bouts on a cycle ergometer at various cadences and work rates (60, 90, and 120 revolutions per minute (rpm) at 120, 210, and 300W). Three-dimensional kinematic data were collected and flexion/extension angles of the ankle, knee, and hip joints were subsequently calculated. These data were used to determine two intra-limb joint couplings [hip flexion/extension-knee flexion/extension (HK) and knee flexion/extension-ankle plantar-flexion/dorsi-flexion (KA)], which were analysed using continuous relative phase analysis. Trained participants displayed significantly (p < 0.05) lower coordination variability (6.6 +/- 4.0 degrees) than untrained participants (9.2 +/- 4.7 degrees). For the trained subjects, the KA coupling displayed significantly more in-phase motion in the 120 rpm (19.2 +/- 12.3 degrees) than the 60 (30 +/- 7.1 degrees) or 90 rpm (33.1 +/- 7.4 degrees) trials and the HK coupling displayed significantly more in-phase motion in the 90 (33.3 +/- 3.4 degrees) and 120 rpm (27.9 +/- 13.6 degrees) than in the 60 rpm trial (36.4 +/- 3.5 degrees). The results of this study suggest that variability may be detrimental to performance and that a higher cadence is beneficial. However, further study of on-road cycling is necessary before any recommendations can be made.  相似文献   

11.
This systematic review sought to synthesise what is currently known about the psychology of elite cycling. Nine electronic databases were searched in March 2017 for studies reporting an empirical test of any psychological construct in an elite cycling sample. Fourteen studies (total = 427) met inclusion criteria. Eight studies were coded as having high risk of bias. Themes extracted included mood, anxiety, self-confidence, pain, and cognitive function. Few studies had similar objectives meaning that in many instances findings could not be synthesised in a meaningful way. Nevertheless, there was some cross-study evidence that elite cyclists have more positive mood states (relative to normative scores), pre-race anxiety impairs performance (among male cyclists), and associative strategies are perceived as helpful for pain management. Among single studies coded as having low risk of bias, evidence suggests that implicit beliefs affect decision making performance, elite cyclists are less susceptible to mental fatigue (than non-elite cyclists), and better leadership skills relates to greater social labouring. Limitations include non-standardisation of measures, lack of follow-up data, small sample sizes, and overall poor research quality. The findings of this systematic review might be used to inform research and theory development on the psychology of elite endurance cycling.  相似文献   

12.
Attaining high speed of the stick head and consequently of the ball is essential for successful performance of the drag flick in field hockey, but the coordination pattern used to maximise stick head speed is unknown. The kinematics of the drag flick was studied in ten elite hockey players who performed twenty shots each towards a target located 1.5 m high. A 150 Hz active marker motion analysis system was used, alongside two force plates to detect foot touchdown. Angular velocity and contribution to stick endpoint speed of upper body joints were analysed. Repeated measures ANOVA was used to compare timing of onset and peak angular velocities between joints. Participants used a kinematic pattern that was close to a proximal-to-distal sequence. Trunk axial rotation and lateral rotation towards the target, right wrist flexion and left wrist extension were the main contributors to stick endpoint speed. Coaches should emphasise trunk rotations and wrist flexion and extension movements for maximising stick head speed. Given the high level of the participants in this study, the coordination of joints motions, as reported here, can serve as a guideline for drag flick training.  相似文献   

13.
ABSTRACT

Mobile power meters provide a valid means of measuring cyclists’ power output in the field. These field measurements can be performed with very good accuracy and reliability making the power meter a useful tool for monitoring and evaluating training and race demands. This review presents power meter data from a Grand Tour cyclist’s training and racing and explores the inherent complications created by its stochastic nature. Simple summary methods cannot reflect a session’s variable distribution of power output or indicate its likely metabolic stress. Binning power output data, into training zones for example, provides information on the detail but not the length of efforts within a session. An alternative approach is to track changes in cyclists’ modelled training and racing performances. Both critical power and record power profiles have been used for monitoring training-induced changes in this manner. Due to the inadequacy of current methods, the review highlights the need for new methods to be established which quantify the effects of training loads and models their implications for performance.  相似文献   

14.
15.
Measurements are presented of drag and lift on new tennis balls in flight. Two video cameras were used to measure the velocity and height of the balls at two positions separated horizontally by 6.4 m. The balls were fired from a ball launcher at speeds between 15 and 30 m/s and with topspin or backspin at rates up to 2,500 rpm. Significant shot-to-shot variations were found in both the drag and lift coefficients. The average drag coefficient was 0.507 ± 0.024, independent of ball speed or spin, and lower than the value usually observed in wind tunnel experiments. The lift coefficient increased with ball spin, on average, but significant lift was observed even at very low spin. The latter effect can be attributed to a side force arising from asymmetries in the ball surface, analogous to the side force responsible for the erratic path of a knuckleball in baseball.  相似文献   

16.
The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed.  相似文献   

17.
Aerodynamic properties of an archery arrow   总被引:1,自引:0,他引:1  
Two support-interference-free measurements of aerodynamic forces exerted on an archery arrow (A/C/E; Easton Technical Products) are described. The first measurement is conducted in a wind tunnel with JAXA’s 60 cm Magnetic Suspension and Balance System, in which an arrow is suspended and balanced by magnetic force against gravity. The maximum wind velocity is 45 m/s, which is less than a typical velocity of an arrow (about 60 m/s) shot by an archer. The boundary layer of the arrow remains laminar in the measured Re number range (4.0 × 103 < Re < 1.5 × 104), and the drag coefficient is about 1.5 for Re > 1.0 × 104. The second measurement is performed by a free flight experiment. Using two high-speed video cameras, we record the trajectory of an archery arrow and analyze its velocity decay rate, from which the drag coefficient is determined. In order to investigate Re number dependence of the drag coefficient in a wider range (9.0 × 103 < Re < 2.4 × 104), we have developed an arrow-shooting system using compressed air as a power source, which launches the A/C/E arrow at an arbitrary velocity up to 75 m/s. We attach two points (piles) of different type (streamlined and bullet) to the arrow-nose. The boundary layer is laminar for both points for Re less than about 1.2 × 104. It becomes turbulent for Re larger than 1.2 × 104 and the drag coefficient increases to about 2.6, when the bullet point is attached. In the same Re range, two values of drag coefficient are found for the streamlined point, of which the lower value is about 1.6 (laminar boundary layer) and the larger value is about 2.6 (turbulent boundary layer), confirming that the point-shape has a crucial influence on the laminar to turbulent transition of the boundary layer.  相似文献   

18.
Abstract

The development of peak performances is a main research focus in sports science. It is unclear how many former top junior athletes achieve success in the elite class later. The aim of the present study was to examine the careers of athletes who participated in major junior or adult/elite cycling events using prospective and retrospective analysis of competition results. The official results of major junior (age ≤ 18 years) and elite (age > 18 years) cycling races from 1980 to 2004 were analysed. Age-related aspects, career lengths, and success were compared between riders who presented results in both junior and elite races (JUNIOR ELITE) and riders who had no junior race results (ELITE ONLY). Altogether, 27,454 results of 8004 athletes from 108 countries were collected. We found that 29.4% of the elite athletes had participated in junior World Championships, and that 34% of the participants in junior World Championships later participated in major elite competitions. JUNIOR ELITE athletes are significantly more successful in several cycling disciplines and have their first and last elite result at a younger age than ELITE ONLY athletes. No difference was found in career lengths. The data presented here emphasize the importance of long-term training programmes in the development of peak performance in cycling.  相似文献   

19.
The drag flick is the preferred method of scoring during a penalty corner in field hockey. Performing the drag flick requires a combination of strength, coordination and timing, which may increase susceptibility to injuries. However, injury prevalence in drag flickers has not previously been investigated. Therefore, this study compared the injury prevalence and severity of lower limb and lower back injuries between drag flickers and non-drag flickers in field hockey. A total of 432 local, national and international adult field hockey players (242 males, 188 females) completed an online questionnaire to retrospectively determine the 3-month prevalence and severity of ankle, knee, hip and lower back injuries. Of this group, 140 self-identified as drag flickers and 292 as non-drag flickers. The results showed that drag flickers had significantly higher prevalence of hip (OR: 1.541; 95% CI: 1.014, 2.343) and lower back injury (OR: 1.564; 95% CI: 1.034, 2.365) compared to non-drag flickers. No significant differences were observed between drag flickers and non-drag flickers in injury prevalence at the ankle and knee. There were no significant between-group differences in injury severity scores. Overall, the prevalence of hip and lower back injuries was significantly higher in drag flickers compared to non-drag flickers.  相似文献   

20.
The development of peak performances is a main research focus in sports science. It is unclear how many former top junior athletes achieve success in the elite class later. The aim of the present study was to examine the careers of athletes who participated in major junior or adult/elite cycling events using prospective and retrospective analysis of competition results. The official results of major junior (age < or = 18 years) and elite (age > 18 years) cycling races from 1980 to 2004 were analysed. Age-related aspects, career lengths, and success were compared between riders who presented results in both junior and elite races (JUNIOR ELITE) and riders who had no junior race results (ELITE ONLY). Altogether, 27,454 results of 8004 athletes from 108 countries were collected. We found that 29.4% of the elite athletes had participated in junior World Championships, and that 34% of the participants in junior World Championships later participated in major elite competitions. JUNIOR ELITE athletes are significantly more successful in several cycling disciplines and have their first and last elite result at a younger age than ELITE ONLY athletes. No difference was found in career lengths. The data presented here emphasize the importance of long-term training programmes in the development of peak performance in cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号