首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
同学们都熟知,在△ABC中,A、B、C为三个内角,a,b,c为三边,R为△ABC的外接圆半径,则有正弦定理 a/sinA=b/sinB=c/sinC=2R 正弦定理它是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理.灵活运用正弦定理解几何题,往往可以避免因添设辅助线所带来的困难,而且在许多情况下,能使证明思路清晰,解法简捷明快.  相似文献   

2.
关于垂足三角形外接圆半径之间有下面一个恒等式:定理设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,△ABC的面积,外接圆半径,内切圆半径分别为?,R,r,若△AEF,△BDF,△CDE的外接圆半径依次为R A,BR,RC,则cot cot cotA2B2C2R A+R B+RC2(R r)r=??.(1)证明如图,由文[1]知EF=a cos A,FD=b cos B,DE=c cos C,∵A2sinREF=A cos2sina A=A2sin cos,R A A=A H D AE BFC∴R A=R cos A.同理RB=R cos B,RC=R cos C.令cot cot cot,A2B2C2K=R A+R B+RC在△ABC中应用常见恒等式:?=rs,cot2422∑A=s?R?r?r,csc2422…  相似文献   

3.
关于垂足三角形旁切圆半径之间有下面一个恒等式: 定理 若△ DEF 是锐角△ ABC 的垂足三角形,且 BC = a,CA = b,AB = c , p = (a b c) /2, △ ABC 的面积、外接圆半径、内切圆半径分别为? 、R 、r ,△ DEF 的旁切圆半径依次为rd 、re 、rf ,则有 rd = re =  相似文献   

4.
凌燕 《数学教学》2007,(8):28-30
2007年春考有这样一道题(20题):通常用a、b、c分别表示△ABC三个内角A、B、C所对边长,R表示△ABC的外接圆半径,给定三个正实数a、b、R,其中b≤a,问a、b、R满足怎样关系时,以a、b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在情况下,用a、b、R表示C.  相似文献   

5.
定理 设△ABC的三边长BC=a,CA=b,AB=c,所对角平分线长分别为t_a、t_b、t_c,面积为△,又设△ABC的外接圆和内切圆半径分别为R、r,则有:  相似文献   

6.
定理设△ABC 三边为 a,b,c,a+b+c=2p,外接圆半径为 R.则由三个旁心构成的三角形的面积 S_0=2pR.证明:记△ABC 面积为 S,内切、旁切圆半径分别  相似文献   

7.
5.9正弦定理、余弦定理教材细解1.正弦定理(1)正弦定理:在△ABC中,a、b、c分别为角A、B、C的对边,R为△ABC的外接圆的半径,则有asinA=sibnB=sincC=2R.(2)正弦定理的证明:①向量法:先选定与其中  相似文献   

8.
2012年北大自主招生数学试卷的第4试题:如果锐角△ABC的外接圆的圆心为O,求O到三角形三边的距离之比,一、试题的多解解法1:如图1,设锐角△ABC中三边长为a,b,c,△ABC外接圆的圆心为O,显见0在△ABC内,设外接圆半径为R,OE⊥AB于E,OF⊥AC于F,OG⊥BC于G,△OBC中,S△OBC=1/2OG×a,S△OBC=  相似文献   

9.
笔者在中国不等式研究小组网站(http://zgbdsyjxz.nease.net/bdbbdb/bdb.htm)上看到一个很有趣的关于三角形中线的一个不等式问题(猜想).今解答如下:命题设△ABC的外接圆半径为R,内切圆半径为r,则当△ABC为任意三角形时,必有一条中线不大于R+r;当△ABC为非钝角三角形时,必有一条中线不小于R+r.为以下证明方便,记△ABC三边长为AB=c,BC=a,CA=b,其对应中线分别为mc,ma,mb,不妨设a≤b≤c,则有ma≥mb≥mc(易证从略),于是命题变为去证明:i)当△ABC为任意三角形时,有mc≤R+r;(1)ii)当△ABC为非钝角三角形时,有ma≥R+r.(2)令对以上(1)、…  相似文献   

10.
经过探讨,笔者发现一个关于三角形的有趣的几何性质.命题若△ABC的内切圆切各边于点、E、F,且△ABC的外接圆与内切圆半径分别为R、r,则有S△DEF=2rRS△ABC.证明:如图1,联结OA、OD、OE、OF,则OA垂直平分EF.设△ABC、△DEF的三边长分别为a、b、c、d、e、f.所以,EF=2rsin∠AOE=2rs  相似文献   

11.
文[1]给出:若△DEF 是锐角△ABC 的垂足三角形,且记 BC=a,CA=b,AB=c,△ABC 的面积、外接圆半径分别为△和 R,△DEF 旁切圆半径依次为 r_D,r_E,r_F,则有(r_D)/(cot A)=(r_E)/(cot B)=(r_F)/(cot C)=△/R.(*)定理设△DEF 为锐角△ABC 的垂足三角形,记号同  相似文献   

12.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

13.
大家熟知的余弦定理是: △ABC中,AB=c,BC=a,CA=b则有a~2=b~2+c~2-2bccosA (1) 又由正弦定理:a=2RsinA,b=2RsinB,C=2RsinC(2R为△ABC外接圆直径)代入(1)得:  相似文献   

14.
众所周知 ,在△ ABC中 ,A,B,C为三个内角 ,a,b,c为对应三边 ,R为△ABC的外接圆半径 ,则有正弦定理  asin A=bsin B=csin C=2 R.正弦定理是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理 .灵活运用正弦定理解几何题 ,往往可以避免因添设辅助线所带来的困难 ,而且在许多情况下 ,能使证明思路自然 ,解法简捷明快 .使用正弦定理 ,应注意它的变形 :(1) ab=sin Asin B,bc=sin Bsin C,ca=sin Csin A.这表明 ,通过正弦定理 ,可实现边长之比与角的正弦之比的相互转化 ,从而将边的关系转化为角的关系用三角知识来解决 ,或者是将…  相似文献   

15.
<正>众所周知,在△ABC中,若R、r分别为其外接圆和内切圆半径,则有R≥2r.这是著名的Euler不等式,本文给出其三个仅与边相关的最新加强.命题1在△ABC中,a、b、c为其三边长,R、r分别为其外接圆和内切圆半径,则有R/2r≥(b~2+c~2)/2bc.(1)证明记S为△ABC面积,由熟知的三角恒等式abc=4RS及S=(1/2)r(a+b+c)知,  相似文献   

16.
一个几何命题的证明   总被引:1,自引:0,他引:1  
命题:二角形的外心至三边距离的和等于它的外接圆半径与内切圆半径之和。已知:O为△ABC的外接圆的圆心,OD、OE、OF为由O至BC、CA、BA的距离,R为它的外接圆半径、r为它的内切圆半径。求证:OD+OE+OF=R+r 本题见于几何辞典(日本,长泽龟之助著,薛德烱等译,新亚书店出版)第293页第1425题。原书的证明是这样的:命△ABC的面积为△,则R=abc/4△,r=△/s=△/(1/2)(a+b+c)  相似文献   

17.
由正弦定理 a/(sin A)=b/(sin B)=c/(sin C)=2R(R为外接圆半径)很容易得出以下几个推论: 推论1:如果两个三角形有一个角相等或互补,那么它们外接圆半径的比等于这两个等角或补角的对边比。即在△ABC和△A′B′C′中,若A=A′或A A′=180°则R/R′=a/a′。  相似文献   

18.
再探一个有趣的几何不等式   总被引:1,自引:0,他引:1  
文[1]中给出了一个有趣的几何不等式: 定理1 若△DEF是△ABC的垂足三角形,△ABC的外接圆半径为R,面积为S,△DEF的外接圆半径为R0,则有  相似文献   

19.
文[1]给出了一个涉及垂足三角形内切圆半径的恒等式:设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,p=(a b c)/2,△ABC的面积、外接圆、内切圆半径分别为?、R、r,若△AEF、△BDF、△CDE的内切圆半径依次为rA、rB、rC,则cot cot cotA2B2C2r A r B rC=?r??R.(1)本文给出(1)式  相似文献   

20.
在△ABC中,设R,r,s,Δ分别为外接圆、内切圆半径,三角形半周长和面积,a,b,c为边长,F为△ABC内部费马点,记FA=x,FB=y,FC=z,则有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号