首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

2.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

3.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

4.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

5.
一、反函数策略例1求函数y=3-x2x+5的值域.分析此题可用“观察法”,但形如y=ax+bcx+d的值域问题,用反函数法尤为简洁.解函数y=3-x2x+5的反函数为y=3-5x2x+1,而y=3-5x2x+1的定义域为x|x≠-12 ,∴原函数的值域为y|y≠-12 .二、换元策略例2求函数y=2x+41-x姨的值域.分析可将原式2x移至等式左边后,再两边平方,用“Δ法”求解,但是值域范围有可能扩大.若令t=1-x姨≥0,则x=1-t2,从而将原式转化为在限制条件下,即t≥0时二次函数的值域问题.解令t=1-x姨≥0,则x=1-t2,故原式为y=2穴1-t2雪+4t=-2穴t-1)2+4≤4,∴原函数的值域为(-∞,4].三、数形结合…  相似文献   

6.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

7.
研究函数,常要求函数值域。本文介绍一些无理函数值域求法。 1.y=(ax b)~(1/2)(a≠0)型分析 这种类型的无理函数是最基本的。从观察不难看出值域为{y|y≥0且y∈R}. 2.y=px q±(ax b)~(1/2)型 例1 求y=x 4 (2x 4)~(1/2)的值域。 解令t=(2x 4)~(1/2)(t≥0)则x=(t~2-4)/2(t≥0). ∴原函数为y=(t~2-4)/(2) 4 t=((t 1)~(2) 3)/2 (t≥0), ∴y≥2,原函数值域为{y|y≥2且y∈R}.  相似文献   

8.
学生经常产生一些似是而非的错误,如: 例1 求函数y=x (x~2-3x 2)~(1/2)的值域。 错解 由y-x=x~2-3x 2)~(1/2) 可得 (y-x)~2=x~2-3x 2. 整理得 x=(2-y~2)/(3-2y)(y≠3/2). 因而函数的值域为{y|y∈R,y≠3/2}.  相似文献   

9.
反函数是中学数学的一个难点,在高考中几乎年年出现,虽说其解题步骤简单:1.把函数看作方程,解出x;2.对调x、y;3.原函数的定义域、值域是反函数的值域、定义域.然而在实际解题过程中,经常出现以下误区.误区1:求反函数时忽略原函数的定义域.例1:求函数y=x2+4x+3(x≤-2)的反函数.错解:由已知x2+4x+(3-y)=0,得x=-2±"1+y.∴所得反函数为y=-2±"1+x(x≥-1).剖析:上述解法忽视了原函数的定义域(-∞、-2],故在求得反函数时,应舍去y=-2+"1+x.误区2:求反函数时,忽略原函数的值域.例2:求函数y="x2-2x+4(x≤0)的反函数.错解:因为y2=x2-2x+4,y2-3=(x-1)2…  相似文献   

10.
一策——直接法有的函数的结构并不复杂,可以通过基本函数的值域及不等式性质直接观察出函数的值域.【例1】求函数y=x21 2的值域.解:∵x2≥0∴x2 2≥2∴0相似文献   

11.
求函数的值域涉及到的知识面很广,是教学中的难点之一,笔者在教学中教给学生用下列方法求函数的值域,取得了理想的效果。 一、运用方程的思想求函数值域 运用方程的思想求函数值域,就是将函数y=f(x)的解析式视为关于x的方程(y为参数),只需根据方程有实数解的条件,求出使该方程在函数定义域内有解的所有y值的集合,则此集合目即为函数y=f(x)的值域。 例1 求函数y=5x-1/2x-3(x∑R,且x≠3/2)的值域, 解:把函数式看成关于x的方程,变形得 (2y-5)x=3y 1, 由此可见,原方程在函数定义域内有解的充要条件是2y-5≠0,即y≠5/2,从而可确定所求函数的值域为(-∞,5/2)U(5/2, ∞)。  相似文献   

12.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

13.
本刊1985年第1期《论函数y=(ax~2 bx c)/(mx~2 nx l)(m≠0)值域的求法》中的方法可以推广,今用该法求函数y=(a_1f~2(x) b_1f(x) c_1)/(f_2f~2(x) b_2f(x)) c_2)的值域。一、如果f(x)的函数值可取一切实数。令u=f(x),转化为该文讨论的函数。 [例1] 求函数y=(sin~2x-2sinxcosx 3cos~2x)/(sin~2x 2sinxcosx-3cos~2x)的值域解:1°当cosx=0时,y=1。 2°当cosx≠0时,该函数可化为 y=(tg~2x-2tgx 3)/(tg~2x 2tgx-3) 因为tgx可取一切实数值,且该函数的分子分母无公因式,于是 (1-y)tg~2x-2(1 y)tgx 3(1 y)=0 则Δ=[-2(1 y)]~2-4×3(1 y)(1-y)≥0 2y~2 y-1≥0  相似文献   

14.
在求形如 y =ax2 bx cdx2 ex f的值域时 ,可将函数转化为关于x的二次方程 ,通过判别式求出函数的值域 .但利用Δ法求函数值域时应注意以下两个问题 .1 .如果函数 y =ax2 bx cdx2 ex f(d≠ 0 )的分母含关于x的二次三项式 ,分子的最高次是二次或一次或零次 ,函数的定义域为R ,可采用Δ法求函数的值域 .例 1 求函数 y=2x2 2x 3x2 x 1 的值域 .解 :令 g(x) =x2 x 1 ,其Δ =1 2 -4=-3 <0 ,∴故 g(x) =x2 x 1 >,函数 g(x)的定义域为R .∴已知函数可化成(y -2 )x2 (y -2 )x y -3 =0 .∵x∈R且 y≠ 2 ,∴关于x的方程应有Δ =(y…  相似文献   

15.
有一类函数的值域或最值可用实系数一元二次方程的根的判别式Δ去求解 .在解题过程中 ,我们要小心使用Δ .例 1 求函数 y =x2 -x - 1x2 -x 1(x∈R)的值域 .错解 :原式可化为 (y - 1)x2 - (y - 1)x y 1=0 .因为x∈R ,所以Δ =[- (y- 1) ]2 - 4 (y - 1) (y 1)≥ 0 ,解得 - 53≤y≤ 1,故原函数的值域为 - 53≤y≤ 1.分析原式在化为关于x的方程 (y - 1)x2 - (y - 1)x y 1=0后 ,在使用Δ时 ,忽略了二次项的系数 y - 1≠ 0的条件 ,须知只有限定 y - 1≠ 0时 ,才能用根的判别式Δ去求解 .正解 :因为x2 -x 1=x - 122 34≠ 0 ,所以原式可化…  相似文献   

16.
文献[1]在对一道分式函数值域的错解进行纠错时,不慎又给出了一个错误答案.摘录如下:问题求函数 y=(1-x~2)~(1/2)/(2 x)的值域.错解原式变形为(x 2)y=(1-x~2)~(1/2),两边平方整理得(y~2 1)x~2 4y~2x 4y~2-1=0,因为 y~2 1>0且 x 是实数,所以△=16y~4-4(y~2 1)(4y~2-1)≥0,从而|y|≤1/3~(1/2),即原函数的值域是[-(3~(1/2)),3~(1/2)].剖析原函数在化为整式及去根号时,扩大了定义域,从而扩大了函数的值域.解因为函数的定义域为-1≤x≤1,所以 x 2>0,可得0≤((1-x~2)~(1/2))/(x 2)≤1/2.当 x=±1时,左端等号成立;当 x=0时,右端等号成立,所以函数的值域为[0,1/2].在高中数学教学中,常遇到一些分式函数的值域求解问题.学生的解题错误率较高,有的甚至感觉  相似文献   

17.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

18.
函数的值域是由其对应法则和定义域共同决定的.函数值域依解析式的特点分(1)常见函数值域;(2)简单的复合函数的值域;(3)由常见函数作某些"运算"而得函数的值域.一、直接法利用常见函数的值域来求(1)一次函数y=ax+b(a≠0)的定义域为R,值域为R(2)反比例函数y=k/x(k≠0)的定义域为{x|x≠0},值域为{y|y≠0};(3)二次函f(x)=ax~2+bx+c(a≠0)的定义域为R,当a>0时,值域为{y|y≥4ac-b~2/4a};  相似文献   

19.
方法一:反函数法根据反函数的性质,一个函数若存在反函数,那么反函数的定义域就是原函数的值域.这样,从原函数表达式y=f(x)中,解出自变量x来,得到一个以y为变量,x为函数的新函数x=f-1(y),这个函数自变量y的取值范围,就是原函数y=f(x)的值域.这个方法一般适用于分子、分母都是一次式的分式函数.例1.求函数y=1-x2x+5的值域.分析:因为y=1-x2x+5=-12+722x+5图象为以点(-52,-12)为中心,平行于x轴,y轴两条相交线为渐近线的双曲线.从自变量x到函数y是一一映射,存在反函数.解:由y=1-x2x+5得x=1-5y2y+1,这个函数中,自变量y的取值范围是y≠-12.所以,原…  相似文献   

20.
对于形如y=(a1x2 b1x c1)/(a2x2 b2x c2)(a1,a2不同时为0)的函数,常常用根的判别式法求其值域。这是利用方程思想、等价转化思想将所给函数转化为关于x的一元二次方程,通过方程有根,判别式Δ≥0,从而求得原函数值域。根据函数定义域的不同,一般可分为2种类型。一、函数定义域为实数集R例1:求函数y=2xx22 24xx -37的值域解:∵分母x2 2x 3=(x 1)2 2≥2∴函数定义域为R将原函数变形为(2-y)x2 (4-2y)x 7-3y=0(1)当y=2时,方程(1)无解。当y≠2时,(在用判别式前要检查方程二次项系数),由于x∈R∴方程(1)有实数解。∴Δ=(4-2y)2-4(2-y)(7-3y)≥0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号