首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the factors affecting students' learning in science is their existing knowledge prior to instruction. The students' prior knowledge provides an indication of the alternative conceptions as well as the scientific conceptions possessed by the students. This study is concerned primarily with students' alternative conceptions and with instructional strategies to effect the learning of scientific conceptions; i.e., to effect conceptual change from alternative to scientific conceptions. The conceptual change model used here suggests conditions under which alternative conceptions can be replaced by or differentiated into scientific conceptions and new conceptions can be integrated with existing conceptions. The instructional strategy and materials were developed for a particular student population, namely, black high school students in South Africa, using their previously identified prior knowledge (conceptions and alternative conceptions) and incorporate the principles for conceptual change. The conceptions involved were mass, volume, and density. An experimental group of students was taught these concepts using the special instructional strategy and materials. A control group was taught the same concepts using a traditional strategy and materials. Pre- and posttests were used to assess the conceptual change that occurred in the experimental and control groups. The results showed a significantly larger improvement in the acquisition of scientific conceptions as a result of the instructional strategy and materials which explicitly dealt with student alternative conceptions.  相似文献   

2.

This paper compares resistance by scientists to new ideas in scientific discovery with students' resistance to conceptual change in science learning. First, the resistance by students to abandon their misconceptions concerning scientific topics is studied. Next, the resistance by scientists to scientific discovery is studied and some of the causes of such resistance are explored. Some conclusions and direct implications for science teaching are suggested.  相似文献   

3.

Changes in the mode of presenting the killer whales within the aquarium required both marine mammal and interpretation staff to change their conceptions of the role and value of killer whale ‘performances’. The process of change that staff underwent is similar to, and can be facilitated by understanding of, conceptual change processes among learners of science. Similar constructivist strategies of conceptual challenge can guide the staff's interaction with visitors, as an attempt is made to help visitors see the ecological relationships of wild and captive killer whales.  相似文献   

4.

The use of the phrase 'the public understanding of science' has been under attack for some time because of its incompatibility with modern theories of learning. In an attempt to find a more acceptable model, interviews were conducted at Questacon, the Australian National Science and Technology Centre, with visitors of a wide range of ages who had used the interactive exhibits there. The study showed that, when using an exhibit, a visitor has a reminding of a similar experience that forms the basis for interpretating the exhibit. An individual's existing 'personal awareness of science and technology' (PAST) draws on this prior experience to produce an understanding of the exhibit and, to some extent, an understanding of the underlying scientific model. A model for PAST embracing these factors is proposed and is used to interpret the learning resulting from interaction with such exhibits and other kinds of science-based experience.  相似文献   

5.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

6.

A theoretical framework based on cognitive/developmental research is described. It is argued that science learning is a gradual process during which initial conceptual structures based on children's interpretations of everyday experience are continuously enriched and restructured. Conceptual change also involves increased metaconceptual awareness, cognitive flexibility, and theoretical coherence. Some of the implications of this research for the development of science curricula and for instruction are discussed. It is also argued that while cognitive/developmental research can provide us with important information about the process of learning science, it does not provide much information about the external, environmental variables that can facilitate cognitive performance and conceptual change. What is needed in the future is the development of a theory of learning that bridges science education and cognitive/developmental research. Such a theory should specify the mechanisms that can take an individual from one level of cognitive performance to the next and relate them to situational and cultural factors.  相似文献   

7.
Abstract

This article examines the social nature of teachers' conceptions by showing how teachers frame the “mismatch” of students' perceived abilities and the intended school curriculum through conversational category systems. This study compares the conversations of 2 groups of high school mathematics teachers addressing the Mismatch Problem when implementing equity-geared reforms. Although East High teachers challenged conceptions that were not aligned with a reform, South High teachers reworked a reform mandate to align with their existing conceptions. This research found that the teachers' conversational category systems modeled problems of practice; communicated assumptions about students, subject, and teaching; and were ultimately reflected in the curriculum. Because East High teachers supported greater numbers of students' success in advanced mathematics, this study considers the relation between teachers' understandings of student learning and the success of equity-geared math reforms. In addition, this study contributes to the understanding of how teacher conceptions of students are negotiated and reified in context, specifically through interactions with colleagues and experiences with school reform.  相似文献   

8.

This article examines the process of students' conceptual changes in respect of air pressure and buoyancy as a result of instructing with the Dual Situated Learning Model. The dual situated learning events of this model were designed according to the students' ontological viewpoint on the science concepts as well as on the nature of these concepts. Results demonstrated that the notion of buoyancy required more dual situated learning events for conceptual change to occur than that for air pressure. Instead of attributing the difficulty involved in conceptual change to the mismatch of ontological category of the concepts, the author proposes that the hierarchical level of the scientific concepts would determine how easy or difficult it is to bring out a conceptual change. Concepts of higher hierarchical level subsume more essential underlying concepts, thus making it more difficult for conceptual changes to occur.  相似文献   

9.
ABSTRACT

The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors investigated the conceptual changes of secondary school teachers teaching domain-specific STEM courses after a week-long professional development experience integrating earthquake engineering and domain-specific concepts. They documented and then triangulated outcomes of the experience using participating teachers' concept maps and teacher-generated written materials, respectively. Statistical comparisons of participants' concept maps revealed significant increases in their overall understanding of earthquake engineering and more accurate linkages with and among science domain-specific concepts. Content analyses of teachers' learning products confirmed the concept map analysis and also provided evidence of transfer of workshop learning experiences into teacher-designed curriculum products accurately linking earthquake engineering and domain-specific STEM content knowledge.  相似文献   

10.

In this review, we discuss (1) how the notion of conceptual change has developed over the past three decades, (2) giving rise to alternative approaches for analysing conceptual change, (3) leading towards a multiperspective view of science learning and instruction that (4) can be used to examine scientific literacy and (5) lead to a powerful framework for improving science teaching and learning.  相似文献   

11.
《学习科学杂志》2013,22(1):91-142
Starting from the premise that understanding conceptual change requires studying it while it occurs, this article describes a new research methodology in which students' knowledge is assessed in the context of mediated learning situations that attempt to foster conceptual change. The methodology builds on two ideas: that conceptual change in science is a matter of appropriation by individuals of culturally based knowledge (of the scientific community), and that understanding such change requires a mediated context in which the students' activity (actions and thinking) is shaped by a more experienced other who reflects the cultural norms or ideals of the scientific community that facilitate knowledge production. Specific assessments developed with these ideas in mind, which we call dynamic science assessments (DSAs), function to determine students' potential to change their understanding and as a result inform us about the process of conceptual change toward scientific knowledge. Results of a DSA about electricity that we conducted with upper elementary school children (n = 28) indicated that it was possible to foster conceptual change and to discriminate children with respect to their potential to develop scientifically accurate conceptions of current and resistance. These findings indicate the promise of using mediated learning situations, such as a DSA to study conceptual change in science, and we discuss the direction of future work given the conservative mediation in the assessments conducted in this particular instance.  相似文献   

12.
Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in addressing the difficulties associated with science learning. This paper reports on a two‐phase investigation that explored the impact of multimedia resources situated in a national e‐learning portal to (1) assist generalist and specialist science teachers' teaching practices and (2) stimulate pupils' interest, encourage engagement and improve overall science learning experiences. Our research also investigated how portal resources facilitated and/or acted as barriers for teaching and learning. Findings from our research affirm that multimedia technology has transformed science learning; with these resources accessible through a national portal, radically different learning experiences ensued. These findings raise serious implications for teacher education and professional development in ensuring that teachers acquire sound science content and pedagogical knowledge as well as practical strategies for utilising technology‐rich environments, as this is likely to become the norm. Harnessing the fullest potential that information and communication technology, multimedia and e‐learning portals can offer starts by addressing these challenges.  相似文献   

13.

Researchers of students’ concepts and conceptual change frequently draw analogies to the history of science. The analogy is generally presented when comparing students’ scientific concepts to similar ones in the history of science. We have tried to show the importance of this analogy on a higher level ‐‐ that of understanding the process of conceptual change in general among students.

This article outlines a number of lines in the philosophy of science and analyses differences between the perspectives of a number of broadly constructivist positions which have developed during this century.

The analysis is used to clarify the theoretical basis on which research into student conceptual change is conducted and interpreted.  相似文献   

14.
One important focus for science education researchers over many years has been the attempts to replace students' commonsense and non-scientific explanations of various phenomena by scientific explanations. The approach we adopted almost three decades ago was conceptual mediation, and this was shown to have a considerable level of success with both conceptual and attitudinal change. However, since that time, advances have been made in the application of both cognitive science and neuroscience to science learning. In particular, evidence has accumulated that, rather than the replacement of the commonsense view, the reality is that learners develop a conceptual profile which includes both the commonsense and the scientific. If this is the case, instead of focussing on conceptual replacement, science educators need to aim more actively at strengthening the learner's executive processes which select contextually appropriate responses and inhibit inappropriate ones. In this paper, the initial development, theoretical basis and the practical applications of conceptual mediation are introduced, following which, these are re-examined in the light of more recent findings. Within this discussion, several potential links to recent cognitive and neuroscientific research are drawn, and these raise issues for further research into the most appropriate teaching approaches for tackling existing non-scientific conceptions.  相似文献   

15.
ABSTRACT

Alternative conceptions in astronomy are a road block to new learning. Astronomy content is included in the Australian Curriculum (AC) from Year 3 and then intermittently in Year 5, Year 7 and Year 10. In accepting that science is socio-culturally constructed, it is important for teachers to have a clear understanding of the alternative conceptions that students bring with them to the science classroom. This article reports on the alternative conceptions elicited from 546 students ranging from Year 5 through Year 7 using a modified form of the Astronomy Diagnostic Test [Danaia, L. (2006). Students’ experiences, perceptions and performance in junior secondary school science: An intervention study involving a remote telescope (Doctoral dissertation). Charles Sturt University, Bathurst]. Results show that some well identified alternative conceptions, such as the ‘eclipse model’ to explain the phases of the Moon, exist before students enter high school and prior to any formal learning on the topic. In addition, this research identified a number of alternative conceptions held by pre-adolescent students in Western Australia that were based on knowledge that should have been consolidated by students in Year 3, viz., the relative movements of the Earth, Moon and Sun. Armed with students’ alternative conceptions as a part of their pedagogical content knowledge, teachers can construct active learning experiences that will challenge students’ existing constructs in order to allow for new learning. This sample suggests that we need to identify the reasons behind the lack of consolidation of the foundation astronomy content of the Australian Curriculum outlined for students in Year 3.  相似文献   

16.
Science education researchers have, with few exceptions, not used the conceptual content of science as an important variable in their research. Writings of two groups-philosophers of science, “are concerned with the influence of the conceptual knowledge shared by an intellectual community on the activities of that community and the psychologists are concerned with the influence of the conceptual knowledge held by an individual on that individual's behavior”, science, are concerned with the influence of the conceptual knowledge shared by an intellectual community on the activities of that community and the psychologists are concerned with the influence of the conceptual knowledge held by an individual on that individual's behavior. Suggestions are offered as to what kinds of science education research could be done in which the conceptual content of science is important.  相似文献   

17.
Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the—mostly unconscious—deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.  相似文献   

18.
This study evaluated the effects of cooperative learning on students' verbal interaction patterns and achievement in a conceptual change instructional model in secondary science. Current conceptual change instructional models recognize the importance of student–student verbal interactions, but lack specific strategies to encourage these interactions. Cooperative learning may provide the necessary strategies. Two sections of low-ability 10th-grade students were designated the experimental and control groups. Students in both sections received identical content instruction on the particle model of matter using conceptual change teaching strategies. Students worked in teacher-assigned small groups on in-class assignments. The experimental section used cooperative learning strategies involving instruction in collaborative skills and group evaluation of assignments. The control section received no collaborative skills training and students were evaluated individually on group work. Gains on achievement were assessed using pre- and posttreatment administrations of an investigator-designed short-answer essay test. The assessment strategies used in this study represent an attempt to measure conceptual change. Achievement was related to students' ability to correctly use appropriate scientific explanations of events and phenomena and to discard use of naive conceptions. Verbal interaction patterns of students working in groups were recorded on videotape and analyzed using an investigator-designed verbal interaction scheme. The targeted verbalizations used in the interaction scheme were derived from the social learning theories of Piaget and Vygotsky. It was found that students using cooperative learning strategies showed greater achievement gains as defined above and made greater use of specific verbal patterns believed to be related to increased learning. The results of the study demonstrated that cooperative learning strategies enhance conceptual change instruction. More research is needed to identify the specific variables mediating the effects of cooperative learning strategies on conceptual change learning. The methods employed in this study may provide some of the tools for this research.  相似文献   

19.
20.

This study explored the effects of Roundhouse diagram construction on a previously low-performing middle school science student's struggles to understand abstract science concepts and principles. It is based on a metacognition-based visual learning model proposed by Wandersee in 1994. Ward and Wandersee introduced the Roundhouse diagram strategy and showed how it could be applied in science education. This article aims at elucidating the process by which Roundhouse diagramming helps learners bootstrap their current understandings to reach the intended meaningful understanding of complex science topics. The main findings of this study are that (a) it is crucial that relevant prior knowledge and dysfunctional alternative conceptions not be ignored during new learning if low-performing science students are to understand science well; (b) as the student's mastery of the Roundhouse diagram construction improved, so did science achievement; and (c) the student's apt choice of concept-related visual icons aided progress toward meaningful understanding of complex science concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号