首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 750 毫秒
1.
利用反应磁控溅射法在S i基地生长Zn1-xFexO(x=0.04,0.06,0.08,0.10,0.12)薄膜.X射线衍射结果表明所有样品都具有纤锌矿结构,且C轴择优取向.X射线光电子能谱显示薄膜中的Fe离子为 2价态.磁力显微镜结果表明薄膜具有明显的磁畴花样.磁性测量表明所有在真空下退火的样品都具有室温铁磁性而空气下退火样品具有顺磁性.薄膜中的铁磁性与氧空位有关.  相似文献   

2.
为了研究稀磁半导体Co/TiO2薄膜的微观结构和磁性,进一步探讨制备工艺和测量方法对稀磁半导体薄膜材料的影响。通过高真空对靶直流磁控溅射装置和原位退火工艺制备了Co/TiO2薄膜样品,然后利用扫描探针显微镜、振动样品磁强计和X射线衍射仪对所制得的薄膜样品的磁性和微结构进行了研究,发现磁性金属Co的掺杂量对Co/TiO2薄膜的结构及磁性有重要影响。结果表明:样品的表面粗糙度和颗粒尺寸随磁性金属含量升高而增大;随着Co百分含量的升高,形成的薄膜样品Co/TiO2和Co金属混合结构会减小矫顽力;对于Co含量较低样品其磁滞回线的斜率在低温测量时得到的结果明显小于室温环境的结果,归因于受到了顺磁相的影响。由X射线衍射结果可知此时样品为锐钛矿结构。  相似文献   

3.
利用电子束真空蒸发方法制备了厚度100nm的Ni80Fe20薄膜,研究了磁场退火温度对薄膜磁畴结构的影响。利用振动样品磁强计测量了磁滞回线,利用磁力显微镜观察了薄膜的表面形貌和磁畴结构。结果表明:磁畴结构为明显的条状畴,磁畴宽度最大值约为860nm;随着磁场退火温度的升高,磁畴取向趋于沿垂直膜面方向,退火温度为600℃时,沿着主畴的畴壁形成了细小的横向细畴结构。  相似文献   

4.
利用JDP-560C19型超高真空磁控溅射仪,在玻璃衬底上溅射制备NiMn/NiFe双层膜样品,。通过控制NiMn/NiFe双层膜退火温度改变其微观结构,研究样品磁性与退火温度的关系。研究表明,NiMn/NiFe双层膜的矫顽力和交换偏置场均随着退火温度的升高而增大,当退火温度为350℃时,矫顽力和交换偏置场都出现一个峰值,随后随着温度升高,矫顽力和交换偏置场减小。  相似文献   

5.
采用化学溶液沉积法在Si(001)衬底上制备Ni0.7Zn0.3Fe2O4铁氧体薄膜,XRD谱表明样品具有单相的尖晶石结构;扫描电子显微镜结果表明样品平均颗粒尺寸随着退火温度的上升从10 nm增加到32 nm。NZFO铁氧体薄膜磁性能与退火温度有强烈的依赖关系,薄膜的矫顽力从退火温度为500℃时的25 Oe增加到900℃时的80 Oe,饱和磁化强度也由146emu/cm3增加到283 emu/cm3,这对于现代电子器件微型化有着非常重要的意义。  相似文献   

6.
采用蒸发镀膜方法,在孔径约为200 nm的多孔阳极氧化铝(AAO)模板上室温沉积名义厚度为300 nm的银薄膜样品,研究真空退火对AAO模板上Ag纳米颗粒膜的结构和光学性质的影响。微观结构利用X射线衍射仪和扫描电镜观测,光学性质采用分光光度计检测。结果表明,(111)取向的银衍射峰强度随退火温度的升高逐渐增强,当退火温度为250℃时达到最大值;银纳米颗粒平均直经随退火温度的升高呈现先缓慢增大,后迅速增大,再减小的态势,当退火温度为250℃时达到最大值140 nm,比制备态大47 nm;薄膜经真空退火后,漫反射率普遍得到提高,在可见光区域,当退火温度为200℃时,漫反射率达到最大,其值为80%,大约为制备态的3倍左右。  相似文献   

7.
采用等离子体增强化学气相沉积技术制备了硼掺杂氢化非晶硅薄膜,然后经过不同温度的热退火处理,获得硼掺杂纳米硅薄膜.结果表明,退火温度为700℃时,样品中开始有纳米晶形成,随着退火温度的增加,在1000℃时,薄膜的晶化率达到77%,晶粒大小为3.9nm.退火温度低于600℃时,光学带隙随着退火温度的升高而变窄,高于600℃...  相似文献   

8.
用热蒸发的方法,在孔径约为200nm的多孔阳极氧化铝(AAO)模板上室温沉积厚度为300nm的银薄膜样品,研究真空退火对AAO模板上Ag纳米颗粒膜表面增强拉曼散射(SERS)的影响.结果表明,制备的样品为多晶结构,真空退火后的银薄膜同制备态相比,(111)取向的银衍射峰强度随退火温度升高而逐渐增强;制备态的银纳米颗粒有很好的SERS特性,退火后银纳米颗粒膜对罗丹明6G(R6G)分子的SERS信号强度随退火温度的升高而逐渐减弱.  相似文献   

9.
目的:退火条件直接影响着电沉积制备的铜铟镓硒薄膜品质,而薄膜品质决定着最终得到器件的转换效率。本实验在不同退火条件下对薄膜进行处理,得出退火条件对薄膜各项表征指标的影响规律,并根据观察到的规律改善退火工艺,以提高铜铟镓硒薄膜品质。创新点:目前利用水溶液电沉积制备的铜铟镓硒薄膜太阳能电池转换效率不高,而退火是制作此电池的关键步骤之一。本文研究了退火温度和升温速率对薄膜品质的影响,分析其可能原因及退火过程发生的反应,并制备出了理想的高品质薄膜。方法:1.在水溶液中利用电沉积法制备出铜铟镓硒薄膜前驱体。2.对前驱体进行退火处理,并针对不同的样品采用不同的退火温度和升温速率。3.利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、X射线荧光光谱(XRF)对薄膜进行表征,分析不同退火条件对结果的影响规律。结论:1.退火温度的影响:退火温度由450°C升高到580°C时,得到的薄膜结晶性越来越好,晶粒边界越来越不明显,Cu/(In+Ga)的比例逐渐升高,说明高温下(≥450°C)金属铟和镓较易挥发;实验中还发现Cu-Se化合物的总含量随退火温度的升高而降低。2.升温速率的影响:退火速率越高,薄膜结晶性越好;快速升温时薄膜中Cu/(In+Ga)的比例略低于慢速升温时的样品,而Ga/(In+Ga)的比例几乎不变,说明快速升温可以减少In和Ga的挥发。  相似文献   

10.
采用射频磁控溅射技术用单晶Si(111)和载玻片制备了SiO2薄膜。对薄膜进行了不同温度的退火处理。利用X射线衍射仪,紫外-可见分光光度计和傅里叶变换红外光谱仪等测试不同退火温度下SiO2薄膜的微结构、透反射曲线和红外吸收谱。研究表明:退火后SiO2薄膜仍为四方结构,薄膜的平均晶粒尺寸随退火温度的升高逐渐增大,晶格常数与标准值相比均稍小。退火温度对薄膜平均反射率影响不明显;薄膜平均透射率随退火温度的升高先增大后减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号