首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an interval observer (IO) based event-triggered control strategy for networked multi-agent systems (MASs) under denial of service (DoS) attacks. The most significant contribution is the proposal of a new event-triggered controller based on distributed IO. Toward this, first, a new distributed IO based on output information is first constructed to estimate the state interval of each agent in the networked MASs. Then a novel distributed IO based event-triggered control (ETC) protocol is constructed using only the information observed by IO. Moreover, it turns out that based on the designed IO based ETC protocol, all agents can reach secure consensus exponentially and Zeno behavior is excluded. Finally, simulation example is used to verify the feasibility of the constructed IO based ETC protocol.  相似文献   

2.
This paper investigates secure bipartite consensus tracking of linear multi-agent systems under denial-of-service(DoS) attacks by using event-triggered control mechanism with data sampling. Both bipartite leader-following and containment tracking consensus are considered in this paper. The event-triggered control protocol using sampled-data information is designed to save limited resources. The communication channels are interrupted by intermittent DoS attacks. Sufficient conditions on the sampling periods, attack frequency and attack duration are obtained to ensure secure bipartite tracking consensus of the multi-agent systems. Finally, simulation example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

3.
This paper studies the fault-tolerant model-free adaptive control (FT-MFAC) problem for a class of single-input single-output (SISO) nonlinear networked control systems (NCSs) under denial-of-service (DoS) attacks. A novel FT-MFAC framework is established with the consideration of DoS attacks and the sensor fault, in which DoS attacks obeying the Bernoulli distribution randomly happen in the sensor-to-controller channel and the sensor fault is approximated by the radial basis function neural network (RBFNN). Based on the proposed framework, an FT-MFAC algorithm that uses only input/output data is proposed to guarantee that the output tracking error is bounded in the sense of mean square. Finally, the effectiveness of the proposed algorithm is illustrated by a simulation.  相似文献   

4.
This paper aims to solve scaled consensus problem for general linear multiagent systems under denial-of-service (DoS) attacks. Firstly, we propose a new scaled disagreement vector and investigate its properties under switching and undirected graphs. Secondly, we establish sufficient conditions in terms of linear matrix inequalities in order to guarantee that the multiagent system achieves scaled consensus under DoS attacks. Contrary to most existing studies where DoS attacks on all the channels are same, in this note, we formulate the problem such that the adversary compromises each agent independently. Moreover, the distributed consensus protocol is investigated for networks with time-varying delay. Finally, two simulation examples are given to demonstrate effectiveness of the proposed design methodologies.  相似文献   

5.
6.
This paper is concerned with the secure bipartite consensus of second-order multi-agent systems under denial-of-service (DoS) attacks. The communication network is an antagonistic network, in which there is cooperative or competitive relationship between neighboring agents. Meanwhile, information cannot be transmitted when the system is attacked. A novel event-triggered control algorithm based on sampled data is proposed to save limited resources and exclude the Zeno behavior. By applying the convergence of monotone sequences, graph theory as well as the discrete-time Lyapunov function method, some sufficient conditions on threshold parameters, frequency and duration of DoS attacks, and sampling period are derived to ensure the bipartite consensus under DoS attacks. Finally, the correctness and advantages of theoretical results are demonstrated by a numerical simulation.  相似文献   

7.
This paper investigates the event-triggered H control problem for network-based Markov jump systems subject to denial-of-service (DoS) attacks. In order to reduce the amount of signal transmission, the event-triggering scheme (ETS) is adopted between sensor and controller. Due to DoS attacks invalidating data over networks, a new switched time-delay Markov jump model with unstable subsystems is developed based on state feedback controller. Then with the help of piecewise Lyapunov-Krasovskii functional method, a set of sufficient conditions incorporating constraints of DoS attacks are provided, which guarantees that the resulting switched time-delay Markov jump system is stochastically stable with a certain H performance. Subsequently, we present criterions to obtain the parameters of state feedback gain and ETS. Finally, an example is provided to show the effectiveness of the proposed method.  相似文献   

8.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

9.
In this paper, the dynamic event-based resilient consensus control of the multiple networked Euler-Lagrangian (E-L) systems under the Denial of Service (DoS) attacks is considered. Compared with linear cyber-physical systems, nonlinear networked E-L systems are more complex and closer to actual mechanical systems. For the situation where the topology is a strongly connected directed topology, a controller based on a dynamic event-trigger mechanism is designed to achieve consensus control for the networked E-L system in the absence of DoS attacks. Sufficient conditions are presented, which can guarantee the closed-loop system be stable. Then the resilient consensus problem of event-based controllers under energy-constrained DoS attacks is analyzed. The conditions related to the duration and frequency of DoS attacks are given. Zeno behavior is proved does not exist in the proposed control scheme. Finally, some numerical simulation results are given for verifying the theoretical results.  相似文献   

10.
《Journal of The Franklin Institute》2022,359(18):11155-11185
Nowadays, cyber-physical systems (CPSs) have been widely used in various fields due to their powerful performance and low cost. The cyber attacks will cause security risks and even huge losses according to the universality and vulnerability of CPSs. As a typical network attack, deception attacks have the features of high concealment and strong destructiveness. Compared with the traditional deception attack models with a constant value, a deception attack with random characteristics is introduced in this paper, which is difficult to identify. In order to defend against such deception attacks and overcome energy constraints in CPSs, the secure state estimation and the event-triggered communication mechanism without feedback information are co-considered to reconcile accuracy of estimation and energy consumption. Firstly, an event-triggered augmented state estimator is proposed for secure state estimation and attack identification. Then, under the ideology of equivalence, the augmented state estimator is derived as a concise two-stage estimator with reduced order. The two-stage estimator can perform the secure state estimation and attack identification respectively. The estimators ensure the accuracy of attack identification well since not treating attack information as the trigger event. Afterward, the comparison of the computational complexity of these two algorithms is analyzed. Finally, an example of a target tracking system is supplied to prove the effectiveness and efficiency of the proposed algorithm.  相似文献   

11.
12.
This paper is concerned with the asymptotic stabilization of discrete singular systems over a bandwidth limited digital network, when the state measurements are periodically sampled and encoded using a finite alphabet, and the control input signals are subject to finite-alphabet encoding and Denial-of-Service attacks. It is assumed that the attack signals are uniform for all sampling periods and have been identified. A dynamic controller is designed based on a restricted equivalent model of the controlled plant. Two types of finite-level quantizers are designed for encoding: uniform and logarithmic. For both types of quantizers, dynamic encoding-decoding strategies for the plant state and the control input are proposed, which exploit the controller’s state and the origin, respectively, as the quantization centers. Sufficient conditions for asymptotic stabilizability involving the sampling period, the numbers of the state and input quantization levels, the beginning time and corresponding duration of the attack signals are established by propagating reachable sets during sampling interval. Finally, several numerical examples are given to illustrate the design procedures and the efficacy of the theoretical results.  相似文献   

13.
14.
This paper investigates the problem of resilient control for cyber-physical systems (CPSs) described by T-S fuzzy models. In the presence of denial-of-service (DoS) attacks, information transmission over the communication network is prevented. Under this circumstance, the traditional control schemes which are proposed based on perfect measurements will be infeasible. To overcome this difficulty, with the utilization of an equivalent switching control method, a novel gain-switched observer-based resilient control scheme is proposed. According to whether the DoS attack is activated, two different controller synthesis conditions are given by combining the information of the tolerable DoS attacks. In addition, a quantitative relationship between the resilience against DoS attacks and the obtained disturbance attenuation level is revealed, which is helpful for balancing the tradeoff between the abilities to tolerate DoS attacks and attenuate the influence of external disturbance. Finally, simulation results are provided to verify the effectiveness of the proposed switching control scheme.  相似文献   

15.
The distributed event-triggered secure consensus control is discussed for multi-agent systems (MASs) subject to DoS attacks and controller gain variation. In order to reduce unnecessary network traffic in communication channel, a resilient distributed event-triggered scheme is adopted at each agent to decide whether the sampled signal should be transmitted or not. The event-triggered scheme in this paper can be applicable to MASs under denial-of-service (DoS) attacks. We assume the information of DoS attacks, such as the attack period and the consecutive attack duration, can be detected. Under the introduced communication scheme and the occurrence of DoS attacks, a new sufficient condition is achieved which can guarantee the security consensus performance of the established system model. Moreover, the explicit expressions of the triggering matrices and the controller gain are presented. Finally, simulation results are provided to verify the effectiveness of the obtained theoretical results.  相似文献   

16.
This paper focuses on the stabilization problem for a class of Markovian jumping systems (MJSs) subject to intermittent denial-of-service (IDoS) attacks by synthesizing the sliding mode control (SMC) and the transition rate matrix (TRM). The existing conditions for the transition rates are firstly established to ensure the exponential mean-square stability of the unforced uncertain MJSs. And then, a co-design scheme for both the sliding mode controller and TRM is synthesized to achieve the exponential mean-square stability of the closed-loop system under IDoS, in which a switching estimator is utilized to estimate the unmeasurable system state. By introducing a novel Lyapunov function, both the reachability and the stability of sliding mode dynamics are detailedly analyzed, and an iterative optimization algorithm is given for solving the corresponding sufficient conditions. Finally, the proposed co-design SMC strategy is illustrated via the simulation examples.  相似文献   

17.
This article investigates the defense control problem for sampled-data Takagi-Sugeno (T-S) fuzzy systems with multiple transmission channels against asynchronous denial-of-service (DoS) attacks. Firstly, a new switching security control method is proposed to tolerate the asynchronous DoS attacks that act independently on each channel. Then, based on switching strategy, the resulting augmented sampled-data system can be converted into new switched systems including several stable subsystems and one open-loop subsystem. Besides, by applying the piecewise Lyapunov-Krasovskii (L-K) function method, membership functions (MFs) dependent sufficient conditions are derived to ensure the exponential stability of newly constructed switching systems. Moreover, quantitative relations among the sampling period, the exponential decay rate, and the rate of all channels being fully attacked and not being completely attacked are established. Finally, simulation examples show the effectiveness of the developed defense control approach.  相似文献   

18.
This paper investigates the security control problem for a class of two-time-scale cyber-physical systems (TTSCPSs) with multiple transmission channels under the denial-of-service (DoS) attacks. A linear TTSCPSs model is first proposed with slow and fast transmission channels, which correspond to slow and fast physical components in terms of their communicating capacities and sampling rates. The measurement data-packets are transmitted via slow and fast transmission channels which are compromised by asynchronous DoS attacks. A novel composite controller depending on the singular perturbation parameter (SPP) is formulated and corresponding switching laws are designed to achieve certain resilience against DoS attacks. Then, by establishing a SPP-dependent Lyapunov function, sufficient conditions are obtained on the duration and frequency of the DoS attacks, such that, for any SPP less than or equal to a predefined upper bound, the input-to-state stability can be guaranteed for the closed-loop TTSCPSs. Finally, a networked DC motor control system is employed to demonstrate the effectiveness of the proposed security control algorithm.  相似文献   

19.
In this paper, the problem about the false data injection attacks on sensors to degrade the state estimation performance in cyber-physical systems(CPSs) is investigated. The attack strategies for unstable systems and stable ones are both designed. For unstable systems, based on the idea of zero dynamics, an unbounded attack strategy is proposed which can drive the state estimation error variations to infinity. The proposed method is more general than existing unbounded attack strategies since it relaxes the requirement for the initial value of the estimation error. For stable systems, it is difficult to bring unbounded impacts on the estimation error variations. Therefore, in this case, an attack strategy with adjustable attack performance which makes the estimation error variations track predesigned target values is proposed. Furthermore, a uniform attack strategy which aims to deteriorate state estimation for both stable systems and unstable ones is derived. Finally, simulations are provided to illustrate the effectiveness of the proposed attack strategies.  相似文献   

20.
This paper studies the event-triggered control for discrete-time switched systems under the influence of denial-of-service (DoS) attacks and output quantization. Firstly, the switching is assumed to be slow enough in the sense of average dwell time, and DoS attacks are assumed to be energy-limited by constraining DoS frequency and DoS duration. Secondly, by designing an event-triggered mechanism which integrates switching, DoS attacks and transmission error, the initial state bound is obtained at a finite time. Then, a novel quantization coding method is designed by introducing a monotonically increasing sequence, which guarantees the unsaturation of the quantizer. On the basis of this, the exponential convergence and Lyapounov stability of the closed-loop system are established. Finally, two-tanks system is illustrated to demonstrate the effectiveness of the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号