首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the stochastic scaled consensus problem for multi-agent systems with semi-Markov switching topologies. Sufficient conditions are established to guarantee the addressed system to realize the scaled consensus with probability one, which means that all agents’ states almost surely reach a dictated proportion. Here, the semi-Markov process concerned is much more general than those utilized in the recent literature, which can be characterized by two important factors: (1) the transition probability matrix, and (2) the polytropical distribution functions of sojourn times. In addition, pinning scaled consensus protocol is designed by employing the pinning control technique, where only the root nodes of the union set of all the topologies are chosen to be pinned, and the final desired state value of the considered system can be realized with probability one. Finally, numerical simulations are provided to illustrate validity of the obtained main results.  相似文献   

2.
The problem of reachable set estimation is studied for discrete-time bilinear system in this paper. Time-varying delays and bounded input disturbances are both considered in bilinear system. The aim is to find reachable set that converges from all the states of system with initial conditions. By constructing Lyapunov–Krasovskii functional, sufficient delay-dependent less conservative stable conditions of reachable set estimation are obtained for bilinear delay system via the reciprocally convex combination and delay partition approaches. The derived theorem can guarantee that all the states of system with initial conditions from some domain are bounded in an ellipsoid and all the states from other domain are converged exponentially within a ball. One simulation example is presented to illustrate the correctness of the derived result in this paper.  相似文献   

3.
This study is concerned with the problem of reachable set estimation for linear systems with time-varying delays and polytopic parameter uncertainties. Our target is to find an ellipsoid that contains the state trajectory of linear system as small as possible. Specifically, first, in order to utilize more information about the state variables, the RSE problem for time-delay systems is solved based on an augmented Lyapunov-Krasovskii functional. Second, by dividing the time-varying delay into two non-uniformly subintervals, more general delay-dependent stability criteria for the existence of a desired ellipsoid are derived. Third, the integral interval is decomposed in the same way to estimate the bounds of integral terms more exactly. Fourth, an optimized integral inequality is used to deal with the integral terms, which is based on distinguished Wirtinger integral inequality and Reciprocally convex combination inequality. This can be regard as a new method in the delay systems. Finally, three numerical examples are presented to demonstrate the effectiveness and merits of the theoretical results.  相似文献   

4.
An event-triggered leader-following consensus problem for multi-agent systems with nonlinear dynamics was investigated in this study. The interaction topologies among the agents that we considered are randomly switched ones, governed by a semi-Markov process with partially unknown rates. By building the state error model between the leader and followers, the consensus problem is first converted into a stability problem. Moreover, an event-triggered transmission scheme based on sampling data was proposed to reduce communication redundancy. The consensus controller and event-triggered parameters can be designed effectively. By constructing a Lyapunov–Krasovskii functional (LKF) with a triple integral, the sufficient conditions required to guarantee the event-triggered consensus can be reached with respect to the linear matrix inequalities (LMIs). Ultimately, the validity of the theoretical results is demonstrated by a numerical example.  相似文献   

5.
In this paper, we consider the consensus of second-order multi-agent systems with exogenous disturbances generated by some nonlinear exosystems under switching topologies. Firstly, a dynamic gain technique based disturbance observer is proposed to estimate the disturbances generated by some nonlinear exosystems. Secondly, based on the proposed disturbance observer, consensus protocol is further proposed. A rigorous consensus analysis is performed. Finally, numerical simulation results are provided to show the effectiveness of the proposed results.  相似文献   

6.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

7.
This paper is concerned with the problems of reachable set estimation and state-feedback controller design for linear systems with distributed delays and bounded disturbance inputs. The disturbance inputs are assumed to be either unit-energy bounded or unit-peak bounded. First, based on the Lyapunov–Krasovskii functional approach and the delay-partitioning technique, delay-dependent conditions for estimating the reachable set of the considered system are derived. These conditions guarantee the existence of an ellipsoid that contains the system state under zero initial conditions. Second, the reachable set estimation is taken into account in the controller design. Here, the purpose is to determine an ellipsoid and find a state-feedback controller such that the determined ellipsoid contains the reachable set of the resulting closed-loop system. Sufficient conditions for the solvability of the control synthesis problem are obtained. Based on these results, the problem of how to design a controller such that the state of the resulting closed-loop system is contained in a prescribed ellipsoid is studied. Finally, numerical examples and simulation results are provided to show the effectiveness of the proposed analysis and design methods.  相似文献   

8.
9.
This paper studies the event-based consensus problem of second-order multi-agent systems with actuator saturation under fixed topology and Markovian switching topologies. By a model transformation, the consensus problem is first converted into the stability problem of the error system. Using discontinuous Lyapunov functional approach, two sufficient conditions on the consensus are derived for second-order multi-agent systems with fixed topology and Markovian switching topologies, respectively. The discontinuous Lyapunov functions take full account of the characteristics of the sawtooth delay, and thus lead to a less conservative consensus criterion. It is shown that the consensus condition depends on the parameters of sampling period, Laplacian matrix, and event-triggered parameter. In addition, this paper provides an effective method to co-design both the consensus controller and the event-triggered parameter. Finally, two numerical examples are provided to illustrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

10.
This paper is devoted to the dynamic event-triggered consensus problem of general linear multi-agent systems under fixed and switching directed topologies. Two distributed dynamic event-triggered strategies, where internal dynamic variables are involved, are introduced for each agent to achieve consensus asymptotically. Compared with the existing static triggering strategies, the purposed dynamic triggering strategies result in larger inter-execution times and less communication energy among agents. In addition, neither controller updates nor triggering threshold detections require continuous communication in the purposed control strategies. It is also proven that the Zeno behavior is strictly ruled out under fixed and switching directed topologies. Finally, the effectiveness of the theoretical analysis is demonstrated by numerical simulations.  相似文献   

11.
This paper is concerned with the consensus of multi-agent systems (MASs) with switching topologies. A norm-bounded event-trigger is designed where non-global information of the communication graph is involved. By directly employing the asynchronous event-triggered neighbor state information, a distributed persistent dwell time (PDT) based predictor-like consensus protocol is proposed. By the proposed scheme, the dynamics of local subsystems are allowed to be unstable during fast switching time intervals as well as the jump time instants, meanwhile, the bounded average consensus of overall MASs can be achieved. In addition, the Zeno-phenomena is naturally excluded. Numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

12.
Time-varying formation tracking problems for high-order multi-agent systems with switching topologies are investigated. Different from the previous work, the states of the followers form a predefined time-varying formation while tracking the state of the leader with bounded unknown control input. Besides, the communication topology can be switching, and the dynamics of each agent can have nonlinearities. Firstly, a nonlinear time-varying formation tracking control protocol is presented which is constructed using only local neighboring information. Secondly, an algorithm with four steps is proposed to design the time-varying formation tracking protocol, where the time-varying formation tracking feasibility condition is introduced. Thirdly, by using the Lyapunov theory, the stability of the proposed algorithm is proven. It is proved that the high-order multi-agent system with switching topologies achieves the time-varying formation tracking if the feasibility condition holds and the dwell time is larger than a positive constant. Finally, a numerical example with six followers and one leader is given to demonstrate the effectiveness of the obtained results.  相似文献   

13.
《Journal of The Franklin Institute》2023,360(14):10681-10705
This paper investigates dynamic event-triggered adaptive leader-following semi-global bipartite consensus (SGBC) of multi-agent systems (MASs) with input saturation. A dynamic event-triggered adaptive control (DETAC) protocol is presented, where the triggering function can regulate its threshold value dynamically. It’s turned out that the SGBC can be achieved via the DETAC protocol under some inequalities. Then, the proposed DETAC protocol is extended to solve bipartite consensus under jointly connected topology. Furthermore, the Zeno behaviors will be avoided. Finally, the rationality of proposed DETAC protocols are tested by simulation results.  相似文献   

14.
In this paper, the event-triggered bipartite consensus problem is investigated for nonlinear multi-agent systems under switching topologies, only part of topologies contain directed spanning tree rooted at the leader. First, a dynamic bipartite compensator is constructed based on relative output information to provide control signal. Then, the time-varying gain method is adopted to propose a compensator-based event-triggered control protocol without Zeno behavior. Notably, the control protocol proposed achieves the bipartite consensus while reducing update frequency effectively. Moreover, a low conservative switching law is designed by the topology-dependent average dwell time strategy, which fully considers the differences among topologies and provides an independent average dwell time for each topology. As an extension, the nonlinear multi-agent systems with non-zero input of leader are further studied. Finally, a practical example is presented to demonstrate the feasibility of proposed control protocol.  相似文献   

15.
In this paper, the leader-following consensus issue is investigated for a class of nonlinear multi-agent systems with semi-Markov parameters subject to hybrid cyber-attacks. A semi-Markov chain is adopted to describe the variation of switching topologies caused by the complexity of the environment and makes the studied problem more general. Hybrid cyber-attacks consisting of denial-of-service attacks and deception attacks are described with the help of two groups of Bernoulli sequences which are assumed to be independent of each other. On this basis, a sufficient condition for the stability of the consensus error system is established by using linear matrix inequality techniques. Finally, the validity of the results obtained is verified by two numerical examples.  相似文献   

16.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

17.
The paper is concerned with the stability and stabilization problems for a family of hybrid linear parameter-varying systems with stochastic mode switching. The switching phenomenon is modeled by a semi-Markov stochastic process which is more generalized than a Markov stochastic process. With the construction of a Lyapunov function that depends on both the parameter variation and operating mode, numerical testable stability and stabilization criteria are established in the sense of σ-error mean square stability with the aid of some mathematical techniques that can eliminate the terms containing products of matrices. To test the effectiveness of the designed stabilizing controller, we apply the developed theoretical results to a numerical example.  相似文献   

18.
The problem of the reachable set (RS) control of sliding mode control (SMC) for a class of singular systems with or without time-varying delay under zero initial conditions is studied. The purpose is to get an RS boundary containing all states of the system by designing an SMC. Firstly, singular systems with or without time-varying delay are decomposed into slow and fast subsystems by using the decomposition approach. Then, the augmented Lyapunov functional is built utilizing the decomposed state vector. The SMC is designed based on the exponential reaching criterion, resulting in the corresponding closed-loop control system (CLCS) construction. As a consequence, an RS criterion is constructed by employing the inequality scaling approach and the free-weighting matrix in conjunction with the linear matrix inequality (LMI). Finally, the validity and primacy of the results are provided by two numerical and practical examples.  相似文献   

19.
This paper considers the positive consensus for a class of multi-agent systems (MASs) with average dwell time (ADT) switching. First, sufficient and necessary conditions are derived for preserving the positivity of the closed-loop MASs. Second, the performance analysis of the consensus error system is accomplished by using the multiple Lyapunov functions (MLFs) approach, and an ADT switching technique designs the corresponding controlled switching signal. Then, both leaderless and leader-following positive consensus are achieved. Furthermore, to reduce the computational complexity, a novel leader-following positive consensus criterion is derived in the form of linear programming (LP). Finally, simulation examples are given to illustrate the effectiveness of the proposed method.  相似文献   

20.
This paper studies the mean-square consensus of second-order hybrid multi-agent systems over jointly connected topologies. Systems with time-varying delay and multiplicative noise are considered. The date sampling control technique is adopted. Through matrix transformation, a positive definite matrix transformed by the Laplacian matrix is obtained, where the Laplacian matrix is a connected subgraph divided by the jointly connected topologies. By using graph theory, matrix theory and Lyapunov stability theory, sufficient conditions and the upper bound of time delays for the mean-square consensus are obtained. Finally, several simulations are presented to demonstrate the validity of the control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号