首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leader-following consensus problems for multi-agent systems with a linear and Lipschitz nonlinear dynamics are considered. Distributed adaptive protocols and Lipschitz distributed adaptive protocols are respectively designed for the linear and Lipschitz nonlinear cases, under which leader-following consensus is reached for jointly connected topology. Finally, a simulation example is provided to illustrate the theoretical results.  相似文献   

2.
This paper addresses the mean-square consensus problems of continuous-time heterogeneous multi-agent systems with communication noises. First, in order to attenuate the communication noises, time-varying consensus gains are applied in the consensus algorithm. Then, by using the tools of algebraic graph theory and stochastic analysis, sufficient conditions for the mean-square consensus are given for the cases with and without a leader. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithms.  相似文献   

3.
4.
In this paper, the leader-following consensus issue is investigated for a class of nonlinear multi-agent systems with semi-Markov parameters subject to hybrid cyber-attacks. A semi-Markov chain is adopted to describe the variation of switching topologies caused by the complexity of the environment and makes the studied problem more general. Hybrid cyber-attacks consisting of denial-of-service attacks and deception attacks are described with the help of two groups of Bernoulli sequences which are assumed to be independent of each other. On this basis, a sufficient condition for the stability of the consensus error system is established by using linear matrix inequality techniques. Finally, the validity of the results obtained is verified by two numerical examples.  相似文献   

5.
In this paper, the event-triggered bipartite consensus problem is investigated for nonlinear multi-agent systems under switching topologies, only part of topologies contain directed spanning tree rooted at the leader. First, a dynamic bipartite compensator is constructed based on relative output information to provide control signal. Then, the time-varying gain method is adopted to propose a compensator-based event-triggered control protocol without Zeno behavior. Notably, the control protocol proposed achieves the bipartite consensus while reducing update frequency effectively. Moreover, a low conservative switching law is designed by the topology-dependent average dwell time strategy, which fully considers the differences among topologies and provides an independent average dwell time for each topology. As an extension, the nonlinear multi-agent systems with non-zero input of leader are further studied. Finally, a practical example is presented to demonstrate the feasibility of proposed control protocol.  相似文献   

6.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

7.
This paper deals with the leaderless consensus controller design for nonlinear multi-agent systems (MASs) subject to the input saturation nonlinearity by using an event-triggered (ET) mechanism. An adaptive ET scheme has been established with variable threshold parameter for attaining an efficient control bandwidth. Linear parameter varying (LPV) formulation and region of stability investigation for dealing with the inherent nonlinearity and input saturation, respectively, are focused in the study. A consensus controller design condition has been formulated to ensure the regional stability, to determine the consensus protocol gains, to choose the parameters of ET mechanism, and to select an appropriate adaptation law for ET control. Elimination of Zeno behavior, based on nonlinearity bounds, for the adaptive ET mechanism has been ensured through a rigorous analysis. In contrast to excising methods, a directed communication topology, adaptive ET mechanism, and removal of Zeno behavior as well as elimination of the windup effect of saturation have been considered in our work. A simulation study has been provided for six robotic agents and comparison results with the existing method are revealed.  相似文献   

8.
This paper studies the stochastic leader-following consensus problem of discrete-time nonlinear multi-agent systems (MASs) with multiplicative noises. The measurement information obtained from agents’ neighbors is inevitably affected by communication uncertainties, where the multiplicative noise is one of the important communication uncertainties. Multiplicative noises together with the intrinsic nonlinear dynamics bring more difficulties in the consensus control design under the leader-following topology. To solve the problem, the parameter-dependent Lyapunov functions are constructed to analyze the consensus control of first-order and second-order MASs, respectively. Some sufficient conditions, explicitly related to control gains, intensity of multiplicative noises and the Lipschitz constant regarding nonlinear functions, are established for reaching the mean square (m.s.) and almost sure (a.s.) leader-following consensus. Specifically, the obtained conditions are some scalar inequalities, which are more convenient in engineering application. Numerical simulations are conducted to validate the theoretical results.  相似文献   

9.
This paper studies the event-based consensus problem of second-order multi-agent systems with actuator saturation under fixed topology and Markovian switching topologies. By a model transformation, the consensus problem is first converted into the stability problem of the error system. Using discontinuous Lyapunov functional approach, two sufficient conditions on the consensus are derived for second-order multi-agent systems with fixed topology and Markovian switching topologies, respectively. The discontinuous Lyapunov functions take full account of the characteristics of the sawtooth delay, and thus lead to a less conservative consensus criterion. It is shown that the consensus condition depends on the parameters of sampling period, Laplacian matrix, and event-triggered parameter. In addition, this paper provides an effective method to co-design both the consensus controller and the event-triggered parameter. Finally, two numerical examples are provided to illustrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

10.
This paper is devoted to the dynamic event-triggered consensus problem of general linear multi-agent systems under fixed and switching directed topologies. Two distributed dynamic event-triggered strategies, where internal dynamic variables are involved, are introduced for each agent to achieve consensus asymptotically. Compared with the existing static triggering strategies, the purposed dynamic triggering strategies result in larger inter-execution times and less communication energy among agents. In addition, neither controller updates nor triggering threshold detections require continuous communication in the purposed control strategies. It is also proven that the Zeno behavior is strictly ruled out under fixed and switching directed topologies. Finally, the effectiveness of the theoretical analysis is demonstrated by numerical simulations.  相似文献   

11.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

12.
This paper is concerned with the consensus of multi-agent systems (MASs) with switching topologies. A norm-bounded event-trigger is designed where non-global information of the communication graph is involved. By directly employing the asynchronous event-triggered neighbor state information, a distributed persistent dwell time (PDT) based predictor-like consensus protocol is proposed. By the proposed scheme, the dynamics of local subsystems are allowed to be unstable during fast switching time intervals as well as the jump time instants, meanwhile, the bounded average consensus of overall MASs can be achieved. In addition, the Zeno-phenomena is naturally excluded. Numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

13.
In this paper, we consider the consensus of second-order multi-agent systems with exogenous disturbances generated by some nonlinear exosystems under switching topologies. Firstly, a dynamic gain technique based disturbance observer is proposed to estimate the disturbances generated by some nonlinear exosystems. Secondly, based on the proposed disturbance observer, consensus protocol is further proposed. A rigorous consensus analysis is performed. Finally, numerical simulation results are provided to show the effectiveness of the proposed results.  相似文献   

14.
This paper considers the problem of the leader-following consensus of generally nonlinear discrete-time multi-agent systems with limited communication channel capacity over directed fixed communication networks. The leader agent and all follower agents are with multi-dimensional nonlinear dynamics. We propose a novel kind of consensus algorithm for each follower agent based on dynamic encoding and decoding algorithms and conduct a rigorous analysis for consensus convergence. It is proved that under the consensus algorithm designed, the leader-following consensus is achievable and the quantizers equipped for the multi-agent systems can never be saturated. Furthermore, we give the explicit forms of the data transmission rate for the connected communication channel. By properly designing the system parameters according to restriction conditions, we can ensure the consensus and communication efficiency with merely one bit information exchanging between each pair of adjacent agents per step. Finally, simulation example is presented to verify the validity of results obtained.  相似文献   

15.
In this paper, the consensus problem of multi-agent systems with general linear dynamics is studied. Motivated by the MIMO communication technique, a general framework is considered in which different state variables are exchanged in different independent interaction topologies. This novel framework could improve the control system design flexibility and potentially improve the system performance. Fully distributed consensus control laws are proposed and analyzed for the settings of fixed and switching multiple topologies. The control law can be applied using only local information. And the control gain can be designed depending on the dynamics of the individual agent. By transforming the overall multi-agent systems into cascade systems, necessary and sufficient conditions are provided to guarantee the consensus of the overall systems under fixed and switching state variable dependent topologies, respectively. Two simulation examples are provided to illustrate the effectiveness of the proposed theoretical results.  相似文献   

16.
This paper investigates the stochastic scaled consensus problem for multi-agent systems with semi-Markov switching topologies. Sufficient conditions are established to guarantee the addressed system to realize the scaled consensus with probability one, which means that all agents’ states almost surely reach a dictated proportion. Here, the semi-Markov process concerned is much more general than those utilized in the recent literature, which can be characterized by two important factors: (1) the transition probability matrix, and (2) the polytropical distribution functions of sojourn times. In addition, pinning scaled consensus protocol is designed by employing the pinning control technique, where only the root nodes of the union set of all the topologies are chosen to be pinned, and the final desired state value of the considered system can be realized with probability one. Finally, numerical simulations are provided to illustrate validity of the obtained main results.  相似文献   

17.
This paper considers the fixed-time bipartite consensus of nonlinear multi-agent systems (MASs) subjected to external disturbances. Under the directed signed networks, several sufficient conditions are proposed to guarantee the fixed-time bipartite consensus of MASs with or without leaders, respectively. Some discontinuous control protocols are developed to realize fixed-time tracking bipartite consensus of MASs with a leader. Moreover, the fixed-time leaderless bipartite consensus under directed signed graph are discussed as well. Two numerical examples are given to verify the effectiveness of the theoretical results.  相似文献   

18.
This paper focuses on designing a leader-following event-triggered control scheme for a category of multi-agent systems with nonlinear dynamics and signed graph topology. First, an event-triggered controller is proposed for each agent to achieve fixed-time bipartite consensus. Then, it is shown that the Zeno-behavior is rejected in the proposed algorithm. To avoid intensive chattering due to the discontinuous controller, the control protocol is improved by estimating the sign function. Moreover, a triggering function is proposed which avoids continuous communication in the event-based strategy. Finally, numerical simulations are given to show the accuracy of the theoretical results.  相似文献   

19.
This study considers the main challenges of presenting an iterative observer under a data-driven framework for nonlinear nonaffine multi-agent systems (MASs) that can estimate nonrepetitive uncertainties of initial states and disturbances by using the information from previous iterations. Consequently, an observer-based iterative learning control is proposed for the accurate consensus tracking. First, the dynamic effect of nonrepetitive initial states is transformed as a total disturbance of the linear data model which is developed to describe I/O iteration-dynamic relationship of nonlinear nonaffine MASs. Second, the measurement noises are considered as the main uncertainty of system output. Then, we present an iterative disturbance observer to estimate the total uncertainty caused by the nonrepetitive initial shifts and measurement noises together. Next, we further propose an observer-based switching iterative learning control (OBSILC) using the iterative disturbance observer to compensate the total uncertainty and an iterative parameter estimator to estimate unknown gradient parameters. The proposed OBSILC consists of two learning control algorithms and the only difference between the two is that an iteration-decrement factor is introduced in one of them to further reduce the effect of the total uncertainty. These two algorithms are switched to each other according to a preset error threshold. Theoretical results are demonstrated by the simulation study. The proposed OBSILC can reduce the influence of nonrepetitive initial values and measurement noises in the iterative learning control for MASs by only using I/O data.  相似文献   

20.
《Journal of The Franklin Institute》2023,360(14):10681-10705
This paper investigates dynamic event-triggered adaptive leader-following semi-global bipartite consensus (SGBC) of multi-agent systems (MASs) with input saturation. A dynamic event-triggered adaptive control (DETAC) protocol is presented, where the triggering function can regulate its threshold value dynamically. It’s turned out that the SGBC can be achieved via the DETAC protocol under some inequalities. Then, the proposed DETAC protocol is extended to solve bipartite consensus under jointly connected topology. Furthermore, the Zeno behaviors will be avoided. Finally, the rationality of proposed DETAC protocols are tested by simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号